Silicon Mitigate Salinity Stress on Gerbera Cut Flower

sameeha salameh maitah

Abstract


 

 

Sameeha Salameh Al-Maitah

sameeha_98@yahoo.com

 

Abstract

Gerbera (Gerbera jamesonii) is an important ornamental flower in global flower market, it is one of the most herbaceous, perennial herb belongs to Asteraceae (compositae) family. Gerbera is very popular and widely used as a decorative garden plant or as a cut flower; can be used in landscapes as bedding plants for borders or as a cut flower for table arrangement. Silicon (Si) is a spread widely element and the second most abundant after oxygen in the soil, covering approximately 28 % of the Earth’s crust. Silicon is not an essential nutrient, but it is known to have beneficial effects when added to plants. In the soil, most sources of silicon are present as crystalline aluminosilicates, which are inert, insoluble, and not directly available for plants. Silicon provides strength to the plant by making the plant tissues strong and rigid. Salinity is one of the abiotic stresses that negatively influence agricultural production. Recent review has proved that supplementary application of silicon involved in ornamental plants tolerance such as gerbera against salinity, it positively increases the activity of antioxidant enzymes, decreases the plasma membrane permeability, resulted in decreasing levels of lipid peroxidation. Also, reduces the transpiration ratio and increases root activities. Decreases in transpiration lead to decreased osmotic stresses in plant cells and root activities improved, because of root activities, uptake of nutrients by plants improved and salt toxicity decreased. 

 

 

 


Keywords


Silicon, Gerbera plants, Abiotic stress, an antioxidant enzyme.

Full Text:

PDF

References


Aghajani, N & Jafarpour. M., (2016). Effects of Pre- and Postharvest Treatments of Silicon and Rice Hull Ash on Vase Life of Gerbera. International Journal of Horticultural Science and Technology. 3(1): 77-87.

Akter, N., Hoque, M.I., & Sarker, R.H. (2012). In vitro Propagation in Three Varieties of Gerbera (Gerbera Jamesonii Bolus.) from Flower bud and Flower Stalk Explants. Plant Tissue culture and biotechnology. 22(2): 143-152.

Almeida, D. M., Oliveira, M. M., Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology.40:326-345.

Ammari. T. G., Tahhan. R., Abubaker. S., Al-zubi, Y., Tahoub. A., Taany. R., Abu-romman. S., AL- Manaseer. N and Stietiya. M.H. (2013). Soil Salinity Changes in the Jordan Valley Potentially Threaten Sustainable Irrigated Agriculture. Pedosphere.23 (3): 376–384.

Baas, R., Nijssen. H.M.C., Van Den Berg. T.J.M. and Warmenhoven. M.G. (1995). Yield and quality of carnation (Dianthus caryophyllus L.) and gerbera (Gerbera jamesonii L.) in a closed nutrient system as affected by sodium chloride. Scientia Horticulturae. 61:273–284.

Babalar, M., Edrisi, B & Naderi, R. (2016). Evaluation of the Mechanical Strength of Gerbera Flower Stem in Response to Silicon and Salicylic Acid Application. Journal of Ornamental Plants. 6( 3): 163-171.

Bilal, H., Islam, H., Adnan, M., Tahir, R., Zulfiqar, R., Umer, M., and kaleem, M., (2020). Effect of Salinity Stress on Growth, Yield and Quality of Roses: A Review. International Journal of Environmental Sciences and Natural Resources. 25(1): 2572-1119.

Broadley, M., Brown, P., Cakmak, I., Ma, J. F., Rengel, Z. & Zhao, F. (2012). Beneficial Elements (p 249-269). In: P. Marschner (ed), Marschner’s Mineral Nutrition of Higher Plants. (3d ed.). Elsevier.

Cardoso, J.C. & Silva, J.A.T. (2013). Gerbera Micropropagation. Biotechnology Advances, Rehovot. 31 (8):1344-1357.

Carmassi, G., Bacci. L., Bronzini. M., Incrocci. L., Maggini. R., Bellocchi. G., Massa. D., Pardossi. A. (2013b). Modelling transpiration of greenhouse gerbera (Gerbera jamesonii H. Bolus) grown in substrate with saline water in a Mediterranean climate. Scientia Horticulturae. 156: 9–18.

Ehret, D. L., Menzies. J. G. & Helmer. T. (2005). Production and quality of greenhouse roses in recirculating nutrient systems. Scientia Horticulturae.106: 103–113

El-Serafy, S. R. (2015). Effect of silicon & calcium on productivity and flower quality of carnation. Thesis.

Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America. 91(1):11-17.

Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50:641.

Frantz, J. M., Locke. J. C., Datnoff. L. E., Omer. M., Widrig. A., Sturtz. D., Horst. L. and Krause. C. R. (2008).Detection, distribution, and quantification of silicon in floricultural crops utilizing three distinct analytical methods. 39:2734–2751.

Gascho, G. J. (2001). Silicon sources for agriculture. Studies in Plant Science. 8:197-207.

Infoagro, E. (2015). El cultivo de la gerbera. Available online at: http://www.infoagro.com/flores/ flores/gerbera.htm

Janislampi, W.K. (2012). Effect of Silicon on Plant Growth and Drought Stress Tolerance. Plant Science.100.

https://digitalcommons.usu.edu/etd/1360

Jayawardaba, R. K., Weerahewa, D., & Saparamadu, J. (2016). The effect of rice hull as a silicon source on anthracnose disease resistance and some growth and fruit parameters of capsicum grown in simplified hydroponics. International Journal of Recycling of Organic Waste in Agriculture. 5(1): 9-15.

JCFA, (2020). Jordan cut flower Association. http://jordanflowers.org/a-homepage-section/

Kamenidou, S., Cavins. T. J. & Marek. S. (2008). Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. Scientia Horticulturae. 43:236–239.

Kamenidou, S., Cavins. T.J. & Marek.S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae. 119:297–301

Kamenidou, S., Cavins, T.J., & Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae. 123(3):390-394.

Kaur, H., and Greger, M. (2019).Si uptake & transport system. Plants. 8(4):81.

Kaya, C., Higgs, D., Ince, F., Amador, B. M., Cakir, A. & Sakar, E. (2003). Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. Journal of Plant Nutrition. 26: 807-820.

Kazemi, M., Gholami. M. & Hassanv. F. (2012c). Effect of silicon on antioxidative defense system and membrane lipid peroxidation in gerbera cut flower. Asian Journal of Biochemistry. 7(3): 171-176.

Keditsu, R. (2013). Soil Fertility and Plant Nutrition. Scientific Journal of Agricultural. 2(3): 97-114.

Khalaj, M. A., Amiri. M., & Sindhu. S. S. (2011). Study on the Effect of Different Growing Media on the Growth and Yield of Gerbera (Gerbera jamesonii L.).Journal of Ornamental and Horticultural Plants. 1(3): 185-189.

Korndörfer, G. H., & Lepsch, I. (2001). Effect of silicon on plant growth and crop yield. Studies in Plant Science. 8: 133-147.

Liang, Y. Q., Chen. Q., Liu. W., Zhang., & Ding. R. (2003). “Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.),” Journal of Plant Physiology. 160(10): 1157– 1164.

Liang, Y., Nikolic, M., Bélanger, R., Gong, H. & Song, A. (2015). Silicon in agriculture, from theory to practice. Springer.Ma, J. F., and Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Agricultural Science and Technology Information .394:21.

Ma, J. F. and Yamaji, N. (2006). Silicon uptake & accumulation in higher plants. Plant Science. 11:392–397.

Ma, J. F. and Yamaji, N. (2008). Functions & transport of silicon in plants. Cellular and Molecular Life Sciences. 65: 3049–3057.

Mattson, N. S. and W.R. Leatherwood. (2010). Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. HortScience. 45(1): 43-47.

Matychenkov, V. V; & Snyder. G. S. (1996). Mobile silicon-bound compounds in some soils of Southern Florida. Eurasian Soil Science. 12: 1165–1173.

Mc Cord, JM. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medicine.108:652-659.

Meena, V., Dotaniya, M., Coumar, V., Rajendiran, S., Kundu, S. & Rao, A. S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Indian Institute of Soil Science. 84: 505–518.

Mills. S, T. (2017). Effect of led lighting and silicon supplementation on growth and flowering of cut flowers. Thesis. https://shareok.org/bitstream/handle/11244/299668/Mills_okstate_0664M_15505.pdf?sequence=1&isAllowed=y

Mitre, V., Mitre, I., Sestras, A.F., and Sestras. R.E. (2010). New products against apple scab and powdery mildew attack in organic apple production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca . 38(3): 234-238.

Moon, H. H., Bae. M. J. and Jeong. B. R. (2008). Effect of silicate supplemented medium on rooting of cutting and growth of chrysanthemum. Flower Research Journal.16:107–111.

Moyer, C., Peres. N. A., Datnoff. L. E., Simonne. E. H. and Deng. Z. (2008). Evaluation of silicon for managing powdery mildew on gerbera daisy. Journal of Plant Nutrition. 31: 2131–2144.

Nungki, P., Swarnali, N., Ratna, C. (2015). Taking Natung1 and Bip lab De, Medicinal plants in traditional use at Arunachal Pradesh, India. International Journal of Phytopharmacy. 5 (5): 86-98.

Oliveira, S. F., Mello, K., and Minami. (2012). Influence of calcium and silicon fertirrigation in the quality of cut gerbera. Ornamental Horticulture (Revista Brasileira de Horticultura Ornamental) .18 (2):163-170.

Pilon-Smits, E.A., Quinn, C. F., Tapken, W., Malagoli, M. and Schiavon, M. 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology. 12(3): 267-274.

Reezi, S., Babalar. M. and Kalantari .S. (2009). Silicon alleviates salt stress, decreases malon dialdehyde content and affects petal color of salt stressed cut rose (Rosa hybrida L.) ‘Hot Lady’. African Journal of Biotechnology . 8(8): 1502-1508.

Rehman, S., Abbas, G., Shahid, M., Saqib, M., Farooq, A. B. U., Hussain, M., et al., (2019). Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicology and Environmental Safety. 171:146–153.

Richter, M., 2001. Silicium verbessert Haltbarkeit bei Gerbera (silicon improves storage of gerbera). Das Magazin für Zierpflanzenbau . 22: 42–44.

Romero-Aranda, R., Soria.T. and Cuartero. J. (2001). “Tomato plant water uptake and plant-water relationships under saline growth conditions,” Plant Science. 160(2): 265–272.

Sahebi, M., Mohamed, M., Hanafi, Abdullah Siti Nor Akmar, Mohd Y. Rafii, Parisa Azizi, F. F. Tengoua, Jamaludin Nurul Mayzaitul Azwa, and M. Shabanimofrad. (2015). Importance of Silicon and Mechanisms of Biosilica Formation in Plan. BioMed Research International. 16:323-24.

Savvas, D., Manos, G., Kotsiras, A. and Souvaliotis, S. (2002). Effects of silicon and nutrient induced salinity on yield, flower quality, and nutrient uptake of gerbera grown in a closed hydroponic system. Journal of Applied Botany and Food Quality.76: 153-158.

Savvas, D., Gizas, G., Karras, G., Lydakis-Simantiris, N., Salahas, G., Papadimitriou, M., Tsouka, N. (2007). Interactions between silicon and NaCl-salinity in a soilless culture of roses in greenhouse. European Journal of Horticultural Science. 72: 73-79.

Shi, Y., Wang, Y., Flowers, T.J., Gong, H. (2013). Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology.170: 847–853

Shi, Q., Bao. Z., Zhu. Z., He. Y., Qian. Q. and Yu. J. (2005). Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry. 66(13): 1551–1559.

Shrivastava, P., and Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22: 123–131.

Sonneveld, C., Baas. R., Nijssen. H.M.C., de Hoog. J. (1999). Salt tolerance of flower crops grown in soilless culture. Journal of Plant Nutrition.22: 1033–1048.

Sujatha, K., Gowda, J.V.N. and Khan M.M. (2002). Effects of different fertigation levels on gerbera under low cost greenhouse. Journal of Ornithology .5(1):54-59.

Tahir Rahamatullah, MA., Aziz, T., Ashraf, M., Kanwal, S., Maqsood, MA. (2006). Beneficial effects of silicon in wheat (Triticum aestivumL.) under salinity stress. Pakistan Journal of Botany.38: 1715-1722.

Torkashvand, M., A., and Shirghani., F. (2015). Alleviating negative effects of irrigation water salinity on growth and vase life of gerbera by foliar spray of calcium chloride and potassium silicate. The Journal of Science and Technology. 6 (23):135-150.

Tubana, B. S., Tapasya, B and Datnoff, L. E. (2016). Review of silicon in soils and plants and its role in US agriculture: History and future perspectives. Soil Science. 181: 393-411.

Tuna, AL., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S. and Girgin, AR. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany. 62:10-16.

Vidalie, H. (2007). Varietal richness and technology for gerbera. P.H.M – Revue Horticole. 497: 33–41.

Winterbourn, C. C. (2019). “Reactive oxygen species in biological systems,” in Vitamin E. 98–117.

Yamamoto, T., Nakamura, A., Iwai, H., Ishii, T., Ma, J.F., Yokoyama, R., Nishitani, K., Satoh, S. and Furukawa, J. (2012). Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. Journal of Plant Research.125 (6):771-779.

Yan, G., Nikolic, M., Mu-jun, M., Zhuo, x., Liang. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture. 17 (10):2138-2150.

Zhu, Y. X., Gong, H. J. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development. 34: 455–472.


Refbacks

  • There are currently no refbacks.


Published by
MUTAH UNIVERSITY