Soft Cloud: A Tool for Visualizing Software Artifacts as Tag Clouds

Ra'Fat Ahmad AL-msie'deen

Abstract


 

Abstract

Software artifacts visualization helps software developers to manage the size and complexity of the software system. The tag cloud technique visualizes tags within the cloud according to their frequencies in software artifacts. A font size of the tag within the cloud indicates its frequency within a software artifact, while the color of a tag within the cloud uses just for aesthetic purposes. This paper suggests a new approach (SoftCloud) to visualize software artifacts as a tag cloud. The originality of SoftCloud is visualizing all the artifacts available to the software program as a tag cloud. Experiments have conducted on different software artifacts to validate SoftCloud and demonstrate its strengths. The results showed the ability of SoftCloud to correctly retrieve all tags and their frequencies from available software artifacts.

 

 

 

 

 

 

أداة لتصور وثائق البرنامج على شكل سحابة العلامات

 

ملخص

 يساعد تصور وثائق البرنامج (software artifacts) مطوري البرامج على إدارة حجم وتعقيد البرنامج. تقنيات التصور المستندة إلى سحابة العلامة (tag cloud)، تصور العلامات داخل السحابة وفقا لمعدل تكرارها في وثائق البرنامج. يشير حجم خط العلامة (font size) داخل السحابة إلى تردد العلامة في وثيقة البرنامج. يستخدم لون العلامة (color) داخل السحابة لأغراض جمالية فقط. يقترح هذا البحث نهجًا جديدا (SoftCloud) لتصور وثائق البرنامج على شكل سحابة العلامات. تكمن أصالة SoftCloud في أنها تصور جميع الوثائق المتاحة للبرنامج على شكل سحابة العلامة. للتحقق من صحة SoftCloud، وإثبات نقاط قوتها، أجريت التجارب على وثائق البرنامج المختلفة. أظهرت النتائج قدرة SoftCloud على استرداد جميع العلامات وتردداتها بشكل صحيح من وثائق البرنامج المتاحة.

 


Keywords


Software engineering, software visualization, information visualization, software source code, JavaDocs, tag clouds.

Full Text:

PDF

References


Al-Msie’deen, R. (2008). A requirement model of local news WEB/WAP application for rural communities. Master thesis, Universiti Utara Malaysia, Kedah Darul Aman, Malaysia.

Al-Msie’deen, R. (2014). Reverse Engineering Feature Models from Software Variants to Build Software Product Lines. PhD thesis, Montpellier 2 University, France.

Al-Msie’deen, R. (2018). Automatic labeling of the object-oriented source code: The Lotus approach. Science International-Lahore, 30(1):45–48.

Al-Msie’deen, R. (2019a). Object-oriented Software Documentation. LAP LAMBERT Academic Publishing.

Al-Msie’deen, R. (2019b). Tag clouds for software documents visualization. JOIV, 3(4):361–364.

Al-Msie’deen, R. (2019c). Tag clouds for the object-oriented source code visualization. ETASR, 9(3):4243–4248.

Al-Msie’deen, R. (2021a). Softcloud prototype. Softcloud.

Al-Msie’deen, R. (2021b). Requirements specification of interactive multimedia magazine for IT news in Jordan. Unpublished/ in Press.

Al-Msie’deen, R. & Blasi, A. (2021). Software evolution understanding: automatic extraction of software identifiers map for object-oriented software systems. Journal of Communications Software and Systems, 17(1): 20–28.

Al-Msie’deen, R. & Blasi, A. (2019). Supporting software documentation with source code summarization. IJAAS, 6(1): 59-67.

Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., &Vauttier, S. (2014). Automatic documentation of [mined] feature implementations from source code elements and use-case diagrams with the REVPLINE approach. SEKE, 24(10):1413–1438.

Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., & Vauttier, S. (2014b). Documenting the mined feature implementations from the object-oriented source code of a collection of software product variants. SEKE, pages 138–143.

Alfrijat, A. M. & Al-Msie’deen, R. (2010). A requirement model of local news WEB/WAP application for rural community. Advances in Computer Science and Engineering, 4(1):37–53.

Anslow, C., Noble, J., Marshall, S.,&Tempero, E. (2008). Visualizing the word structure of java class names. 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 777–778. ACM.

Bajracharya, S., Ossher, J., & Lopes, C. (2010). Searching API usage examples in code repositories with sourcerer API search. In Proceedings of 2010 ICSE Workshop on Search-driven Development: Users, Infrastructure, Tools and Evaluation, pages 5–8. ACM.

Cottrell, R., Goyette, B., Holmes, R., Walker, R. J., & Denzinger, J. (2009). Compare and contrast: Visual exploration of source code examples. International Workshop on Visualizing Software for Understanding and Analysis, pages 29–32. IEEE Computer Society.

Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., & Qu, H. (2010). Context-preserving, dynamic word cloud visualization. IEEE Computer Graphics and Applications, 30(6):42–53.

Deaker, C., Churcher, N., & Irwin, W. (2011). Tag clouds in software visualisation. Technical report TR-COSC 01/11, pages 1–8. Department of cs, University of Canterbury.

Emerson, J. (2014). Tag clouds in software visualisation. Master thesis, University of Canterbury.

Emerson, J., Churcher, N., & Cockburn, A. (2013a). Tag clouds for software and information visualisation. In Proceedings of the 14th Annual ACM SIGCHI NZ conference on Computer-Human Interaction, pages 1:1–1:4. ACM.

Emerson, J., Churcher, N., & Deaker, C. (2013b). From toy to tool: Extending tag clouds for software and information visualisation. In 22nd Australian Conference on Software Engineering (ASWEC 2013), pages 155–164. IEEE Computer Society.

Feinberg, J. (2013). Wordle - Beautiful word clouds. Wordle.

Fellbaum, C. (1998). WordNet: an electronic lexical database. Cambridge, MA: MIT Press. pages 449.

García-Castro, L., Hepp, M., & Castro, A. (2009). Tags4tags: using tagging to consolidate tags. In Database and Expert Systems Applications, pages 619–628. Springer.

Greene, G. &Fischer, B. (2015). Interactive tag cloud visualization of software version control repositories. VISSOFT 2015, pages 56–65. IEEE Computer Society.

Hearst, M. & Rosner, D. (2008). Tag clouds: Data analysis tool or social signaller?. In Hawaii International Conference on Systems Science, page 160. IEEE Computer Society.

Jin, Y. (2017). Development of Word Cloud Generator Software Based on Python. 13th Global Congress on Manufacturing and Management, pages 788-792. Elsevier BV.

Kramer, D. (1999). API documentation from source code comments: a case study of JavaDoc. Annual international conference on Documentation, pages 147–153. ACM.

Lohmann, S., Ziegler J., &Tetzlaff, L. (2009). Comparison of Tag Cloud Layouts: Task-Related Performance and Visual Exploration. In Human-Computer Interaction - International Conference. pages 392--404. Springer.

Martinez, J., Ziadi, T., Bissyande, T., Klein, J., & Traon, Y. (2016). Name suggestions during feature identification: the variclouds approach. In Proceedings of the 20th International Systems and SPLC, pages 119–123. ACM.

Mozilla. (2012). Rhino - Mozilla | MDN. Rhino.

Princeton University. (2010). About WordNet. WordNet.

Rational Software Corp. (2001). Collegiate sports paging system - software architecture document - version 1.0. Software architecture document.

Rinaldi, A. (2019). Web Summarization and Browsing Through Semantic Tag Clouds. Int. J. Intell. Inf. Technol. 15(3): pages 1-23.

Salman, H., Seriai, A., Dony, C., & Al-Msie’deen, R. (2012). Recovering traceability links between feature models and source code of product variants. In VARY ’12, pages 21–25. ACM.

Scheemaecker, M. (2020). NanoXML 2.2.1. Nanoxml.

Stocker, M. (2011). Tag cloud visualization for source code. Sourcecloud.

Yonezawa, T., Wang, Y., Kawai, Y., & Sumiya, K. (2020). Dynamic Video Tag Cloud: A Cooking Support System for Recipe Short Videos. In 25th International Conference on Intelligent User Interfaces, pages 122-123. ACM.


Refbacks

  • There are currently no refbacks.


Published by
MUTAH UNIVERSITY