

ISSN 1022 - 6812

العدد (2) 2021

المجلد (36)

مؤتة

للبحوث والدراسات

مجلة علمية محكمة ومفهرسة

سلسلة العلوم الطبيعية والتطبيقية

تصدر في جامعة مؤتة

ISSN 1022 - 6812

العدد (2) 2021

المجلد (36)

مؤتة للحوث والدراسات

مجلة علمية محكمة ومفهرسة

سلسلة العلوم الطبيعية والتطبيقية

تصدر في جامعة مؤتة

رقم الإيداع لدى مديرية المكتبات والوثائق الوطنية
(1986/5/201)

رقم الترخيص لدى دائرة المطبوعات والنشر
(3353/15/6)
تاريخ 2003/10/22

الفهرس:

* ما ورد في هذا العدد يعبر عن آراء الكتاب أنفسهم ولا يعكس بالضرورة آراء هيئة التحرير أو سياسة جامعة مؤتة.

رئيس هيئة التحرير

عميد البحث العلمي

الأستاذ الدكتور أسامة عيسى مهاوش

الأعضاء

الأستاذ الدكتور هاني الحمایدة

الأستاذ الدكتور هاني الحمایدة

الدكتور نور الدين الشقيرات

الأستاذ الدكتور عوني الحموري

الأستاذ الدكتور يزيد السبوع

أمين السر

رزان المبيضين

مدير دائرة المجلات العلمية

د. خالد أحمد الصرايرة

مدير دائرة المطبوعات

سهام الطراونة

الإشراف والتحرير

د. محمود نايف قرق

الإخراج والطباعة

عروبة الصرايرة

الهيئة الاستشارية الدولية

- الأستاذ الدكتور عرفات عوجان، رئيس جامعة مؤتة، الأردن.
- الأستاذ الدكتور يوسف الجعافرة، جامعة مؤتة، الأردن.
- الأستاذ الدكتور أسامة عيسى مهاوش، جامعة مؤتة، الأردن.
- الأستاذ الدكتور مجدي محارب، جامعة اوتوا، كندا.
- الأستاذ الدكتورة سلوى متولي، جامعة القاهرة، مصر.
- الأستاذ الدكتور موسى عياش، جامعة شيكاغو الحكومية، أمريكا.
- الأستاذ الدكتور محمد بدر، جامعة الشارقة، الإمارات العربية المتحدة.
- الأستاذ الدكتور خالد قرافق، جامعة تكساس (فرع قطر)، قطر.
- الأستاذ الدكتور هادي ابو الرب، جامعة غرب انجلترا، إنجلترا.
- الأستاذ الدكتور راشد سlaghi، جامعة ابن زهر، المغرب.
- الأستاذ الدكتور فارمارز دجافانرودي، جامعة الأمير محمد بن فهد، السعودية.
- الأستاذ الدكتور كار الامبوس اناستاسيوس، جامعة قبرص، قبرص.

مؤة للبحوث والدراسات

سلسلة العلوم الطبيعية والتطبيقية

مجلة علمية محكمة ومفهرسة تصدر عن عمادة البحث العلمي في جامعة مؤة

كلمة المحرر

تصدر مجلة مؤة للبحوث والدراسات في سلسلتها العلوم الطبيعية والتطبيقية منذ عام 1986، وهي مجلة علمية محكمة ومفهرسة، وتصدر بشكل منتظم وبواقع مجلد واحد في كل عام منذ تأسيسها، يحتوي المجلد على عددين، ويشرف على تحريرها هيئة من الأساتذة المتخصصين والأكاديميين في مختلف التخصصات العلمية والتطبيقية، ورقم تصنيفها الدولي (ISSN 1022-6812). تقوم المجلة بنشر الأبحاث الأصلية التي تسهم بنشر العلم والمعرفة في كافة تخصصات العلوم الطبيعية والتطبيقية. وتخصيص الأبحاث المقدمة للنشر إلى معايير دقيقة تشمل التدقيق الفني والتحكيم العلمي من قبل محكمين اثنين للتحقق من صلاحية البحث للنشر.

وقد حظيت المجلة بسمعة رائدة محلياً وإقليمياً على مدار الثلاث عقود الماضية، فأصبحت مجلة معتمدة لغايات النقل والترقية للباحثين في كافة الجامعات الحكومية والخاصة في الأردن، بشكل خاص، والعالم العربي، بشكل عام، وهذا يبرر العدد الكبير والمتزايد من الأبحاث الذي يرد إلى المجلة من جامعات ومؤسسات ومرتكزات بحثية محلية وإقليمية ودولية، ولضمان جودة الأبحاث المنشورة في المجلة، فإنها تتبع معايير وضوابط وإجراءات تضمن جودة المنتج البحثي وتتضمن:

1. قواعد النشر

2. الموصفات الفنية

3. إجراءات النشر

4. أخلاقيات النشر

عميد البحث العلمي

رئيس التحرير

أ. د. أسامه عيسى مهاوش

1. قواعد النشر.

انسجاماً مع الخطة الاستراتيجية لجامعة مؤة ورؤيتها للوصول إلى تحقيق معايير التصنيفات العالمية للجامعات، وانطلاقاً من الخطوة الاستراتيجية لجامعة البحث العلمي ورؤيتها التي تنص على: (تحو عادة حاضنة لبحث علمي متميز يرتقي بتصنيف الجامعة محلياً وإقليمياً وعالمياً) ورسالتها التي تتضمن: (تأمين بيئة قادرة على إنتاج بحوث علمية تسهم في تعزيز دور الجامعة في البحث والإبتكار محلياً وإقليمياً وعالمياً). فقد ارتأت عادة البحث العلمي تطوير مجلة مؤة للبحوث والدراسات للوصول إلى قواعد البيانات العالمية، مثل: SCOPUS, ISI, PubMed SCOPUS, ISI, PubMed والارتفاع بمعامل التأثير (Impact Factor) للجامعة، لوصول الاتجاح البحثي للمؤلفين إلى العالمية.

وبناءً على، وعند تقديم أبحاثكم للنشر في المجلة، يرجى الآتي:

1. اعتماد نظام جمعية علماء النفس الأمريكية (APA)، للالاطلاع على الدليل المختصر لطريقة التوثيق، ولمزيد من الأمثلة، يرجى زيارة الموقع التالي: <https://ejournal.mutah.edu.jo> وموقع المجلة على الرابط: <http://www.apastyle.org/>

الرقم	اسم الملف	ملحوظات
.1	رسالة تغطية Cover Letter	توجه إلى رئيس التحرير
.2	صفحة الغلاف Title Page	يكتب التالي باللغتين العربية والإنجليزية في صفحة الغلاف وحسب الترتيب التالي: 1. عنوان البحث 2. اسم الباحث (الباحثين) من ثلاثة مقطعين. 3. العنوان البريدي 4. البرتبة العلمية 5. البريد الإلكتروني 6. رقم الهاتف
.3	ملخص البحث Abstract	يكتب الملخص باللغتين العربية والإنجليزية بحيث لا يزيد الملخص عن (150) كلمة والكلمات المفتاحية (keywords) عن خمس كلمات.
.4	البحث Research Document	يجب أن تلتزم وثيقة البحث بالمتطلبات التالية: 1. عدم وجود لاسم الباحث (الباحثين). 2. أن لا يحتوي البحث على أي معلومات تشير إلى الباحث (الباحثين). 3. أن يكون التوثيق المراجع في المتن (In-text Citation) (باللغة الإنجليزية). 4. اعتماد نظم جمعية علماء النفس الأمريكية (APA). 5. الالتزام بالمواصفات الفنية طباعة البحث. 6. تخضع البحوث للتحقق الفنى قبل السير في إجراءات التحكيم.
.5	قائمة المراجع References	يجب أن تلتزم قائمة المراجع بالمتطلبات التالية وترسل في نفس الملف: 1. تكتب المراجع (الواردة في البحث باللغة الإنجليزية) في القائمة النهائية مرتبة حسب الحروف الجيمالية (Alphabets). 2. إذا كان المراجع العربية ترجمة إنجليزية معتمدة فيجب اعتماد ذلك، أما المراجع التي ليس لها ترجمة إنجليزية معتمدة (مثلاً: فقه السنة) فيتم عمل Transliteration أي كتابة المراجع بالأحرف الإنجليزية كتابة حرافية (Fiqh Alsunah). 3. إعادة ترتيب كافة المراجع (والتي يفترض أنها قد أصلحت باللغة الإنجليزية) حسب ترتيب الأحرف الإنجليزية (Alphabets) بما يتناسب مع نظام APA. 4. الإبقاء على قائمة المراجع العربية وإدراجها في نهاية الملف بعد المراجع المترجمة.
.6	التعهد Pledge	يلتزم الباحث ببنية التعهد

2. تكتب جميع المراجع العربية باللغة الإنجليزية في المتن وفي قائمة المراجع.
3. ترجمة كافة المراجع غير الإنجليزية (بما في ذلك المراجع العربية) إلى اللغة الإنجليزية، مع ضرورة ابقاء القائمة العربية موجودة.
4. اذا كان للمراجع العربية ترجمة إنجليزية معتمدة فيجب اعتماد ذلك، أما المراجع التي ليس لها ترجمة إنجليزية معتمدة (مثلاً: فقه السنة) فيتم عمل **Transliteration** أي كتابة المراجع بالأحرف الإنجليزية كتابة حرافية، (Fiqh Alsunah).
5. إعادة ترتيب كافة المراجع (والتي يفترض أنها قد أصلحت باللغة الإنجليزية) حسب ترتيب الأحرف الإنجليزية (Alphabets) بما يتناسب مع نظام APA.
6. يجب الالتزام بالمواصفات الفنية لتحرير المخطوط المبينة على موقع المجلة، علماً بأن البحث يخضع للتحقق الفنى عند استلامه. وفي حال عدم الالتزام بهذه المواصفات الفنية يُعاد البحث.
7. يتم تسليم البحث والم ملفات المطلوبة والنماذج الخاصة بها الكترونياً على الموقع <https://ejournal.mutah.edu.jo> و المبينة في الجدول التالي.
8. عدم الالتزام بأى من النقاط السابقة يعني المجلة من السير في إجراءات التحكيم

1. المواصفات الفنية.

يجب الالتزام بالمواصفات الفنية لتحرير المخطوط والموجودة على الرابط: <https://ejournal.mutah.edu.jo> ، حيث يخضع البحث للتحقق الفنى عند استلامه، وفي حال عدم الالتزام بهذه المواصفات الفنية يُعاد البحث.

2. إجراءات النشر.

1. يُقام البحث للنشر إلى عمادة البحث العلمي في جامعة مؤة الكترونياً على موقع المجلة <https://ejournal.mutah.edu.jo>.
2. يوقع الباحث على تعهد النشر وفق نموذج خاص تعتنده المجلة.
3. يعرض البحث على هيئة تحرير المجلة، ويسجل في السجلات المعتمدة.
4. يخضع البحث المرسل إلى المجلة إلى التدقيق الفني والتحكيم الأولي من هيئة التحرير؛ لتقرير أهلية للتحكيم الخارجي، ويحق للهيئة أن تعتذر عن السير في إجراءات التحكيم الخارجي أو عن قبول البحث للنشر في أي مرحلة دون إgabe الأسباب.
5. يرسل البحث إلى ممكينين اثنين على أن يقوم كلاً منها بالرد في مدة أقصاها شهر، وفي حال عدم الرد ضمن المعدل المحدد يتم إرسال البحث إلى محكم آخر، وبناء عليه يكون قرار هيئة التحرير على النحو الآتي:
 - أ. يُقبل البحث للنشر في حالة ورود تقارير إيجابية من الممكينين، وبعد أن يقوم الباحث بإجراء التعديلات المطلوبة، إن وجدت.
 - ب. في حال ورود تقارير سلبية من كلا الممكينين يرفض البحث.
 - ج. في حالة ورود رد سلبي من أحد الممكينين ورد إيجابي من المحكم الثاني يرسل البحث إلى محكم ثالث للبت في أمر صلاحية النشر.
6. إذا كان الباحث من جامعة ما فلا يجوز أن يُحكمُ البحث من قبل زميل يعمل في الجامعة نفسها.
7. يجب على الباحث بعد إبلاغه بإجراء التعديلات أن يقوم بذلك وفق ملاحظات الممكينين في مدة أقصاها أسبوعين من تاريخه، وفي حال عدم استجابة الباحث ضمن المدة المحددة يتم وقف إجراءات السير في نشر البحث.
8. إذا أفاد المحكم (مراجعة التعديلات) أن الباحث لم يقم بالالتزام بإجراء التعديلات المطلوبة، يعطي الباحث فرصة ثانية وأخيره مدتها أسبوعين للقيام بالتعديلات المطلوبة، وإلا يرفض البحث ولا ينشر في المجلة.
9. تمنع رسالة القبول بعد إجراء التدقيق الفني المترتب على البحث بعد التعديل.
10. ترتيب البحث المقبول في المجلة وفقاً لسياسة المجلة.
11. ما ينشر في المجلة يعبر عن وجهة نظر الباحث ولا يعبر بالضرورة عن وجهة نظر جامعة مؤة، أو هيئة التحرير، أو القائمين عليها.

3. أخلاقيات النشر.

لتلتزم هيئة التحرير والمحكمون والباحثون بأخلاقيات النشر التالية:

أولاً: واجبات هيئة التحرير

1. العدالة والاستقلالية: يقوم المحررون بتقييم المخطوطات المقدمة للنشر على أساس الأهمية والأصلية وصحة الدراسة ووضوحها وأهميتها لنطاق المجلة، بغض النظر عن جنس المؤلفين أو جنسيتهم أو معتقدهم الديني بحيث يتمتع رئيس التحرير بسلطة كاملة على كامل المحتوى التحريري للمجلة وتوريث نشره.
2. السرية: هيئة التحرير وموظفو التحرير مسؤولون عن سرية أي معلومات حول البحث المقدم وعدم إفشاء هذه المعلومات إلى أي شخص آخر غير المؤلف والمحكمين والهيئة الاستشارية كل وفقاً لاختصاصه.
3. الإنصاف وتضارب المصالح: هيئة التحرير مسؤولة عن عدم استخدام معلومات غير منشورة موجودة في البحث المقدم لأغراض النشر دون موافقة خطية صريحة من المؤلفين، ويجب على عضو هيئة التحرير الإنصاف عن وجود أي تضارب في المصالح مع أي من المؤلفين، مثل علاقات تنافسية أو تعاونية أو علاقات أخرى مع أي من المؤلفين؛ بدلاً من ذلك، سوف يطلبون عضو خارجي التعامل مع المخطوطة.
4. قرارات النشر: تحرص هيئة التحرير على أن تخضع جميع الابحاث المقدمة للتحكيم من قبل اثنين على الأقل من المحكمين الذين هم خبراء في مجال البحث. وتعتبر الهيئة مسؤولة عن تحديد أي من الابحاث المقدمة إلى المجلة التي سيتم نشرها، بعد التحقق من أهميتها للباحثين والقراء.

ثانياً: واجبات المحكمين.

1. المساهمة في صنع قرارات هيئة التحرير.
2. السرعة والدقة في الورقة: أي محكم يشعر بعدم قدرته على مراجعة البحث لأي سبب كان يجب عليه إخبار هيئة التحرير على الفور ورفض الدعوة للتحكيم بحيث يمكن الاتصال بالمحكمين البدلاء.
3. السرية: أي ابحاث وردت للجنة التحكيم والنشر هي وثائق سرية؛ لذا يجب لا تظهر أو تناقش مع الآخرين إلا إذا أذن بها رئيس التحرير وينطبق هذا أيضاً على المحكمين المدعوين الذين رفضوا الدعوة للتحكيم.
4. معايير الموضوعية: يجب مراجعة وتحكيم الأبحاث بموضوعية وأن تُصاغ الملاحظات بوضوح مع الحجج الداعمة، بحيث يمكن للمؤلفين استخدامها لتحسين أبحاثهم بعيداً عن النقد الشخصي للمؤلفين.
5. الإنصاف وتضارب المصالح: يجب على أي محكم مدعو للتحكيم أن يُعَذَّر هيئة التحرير على الفور بأن لديه تضارب في المصالح ناجم عن علاقات تنافسية أو تعاونية أو علاقات أخرى مع أي من المؤلفين بحيث يمكن الاتصال بالمحكمين البدلاء.

6. المحافظة على سرية المعلومات أو الأفكار المتميزة غير المنشورة والتي تم الكشف عنها في الأبحاث المقدمة للتحكيم وعدم استخدامها دون موافقة كتابية صريحة من المؤلفين وينطبق هذا أيضاً على المحكمين المدعون الذين يرفضون دعوة التحكيم.

ثالثاً: واجبات المؤلفين.

1. معايير إعداد البحث: يجب على المؤلفين الالتزام بالقواعد والإجراءات والمواصفات الفنية وأخلاقيات النشر الموجودة على موقع المجلة.
2. السرقة الأدبية: لا يجوز بأي حال من الأحوال الاعتداء على حق أي مؤلف آخر بأي صورة من الصور فالقيام بهذا العمل يعتبر سرقة أدبية ويتحمل من قام بهذا العمل كامل المسؤولية القانونية والأدبية عن ذلك.
3. الأصلية: يجب على المؤلفين التأكيد من تقديم أعمال أصلية تماماً، وتوثيق أعمال أو كلمات الباحثين الآخرين التي تم الرجوع إليها في بحثهم. وينبغي أيضاً الاستشهاد بالمنشورات المؤثرة في مجال البحث المقدم. فأخذ المعلومة دون توثيق المصدر بجميع أشكاله يُشكل سلوكاً غير أخلاقي للنشر ويأخذ أشكالاً عديدة، مثل اعتماد بحث على أنه للمؤلف نفسه، نسخ أو إعادة صياغة أجزاء كبيرة من بحث آخر (دون الاستناد).
4. عدم إرسال البحث إلى مجلات مختلفة ويشكل مترافقاً: يجب على المؤلف عدم إرسال أو نشر نفس البحث في أكثر من مجلة واحدة. وبالتالي، لا ينبغي للمؤلفين أن يقدموا مخطوطة سبق نشرها في مجلة أخرى وذلك لأن تقديم بحث بالتزامن مع أكثر من مجلة واحدة هو سلوك غير أخلاقي وغير مقبول.
5. تأليف المخطوطة: يجب أن يتم إدراج الأشخاص الذين يستوفون معايير التأليف التالية كمؤلفين في البحث، بحيث يكونوا قادرين على تحمل المسؤولية العامة عن المحتوى: (1) تقديم مساهمات كبيرة في تصميم أو تنفيذ أو الحصول على البيانات أو تحليل أو تفسير الدراسة؛ (2) المساهمة في صياغة وكتابة محتوى البحث أو مراجعته. (3) مراجعة النسخة النهائية من البحث والموافقة عليها وعلى تقديمها للنشر. إضافة إلى ذلك هناك أشخاص لا يستوفون معايير التأليف فيجب ألا يُدرجوا كمؤلفين، ولكن يجب ذكرهم في قسم "شكر وتقدير" بعد الحصول على إذن كتابي منهم.
6. الإخلاص وتضارب المصالح: يجب على المؤلفين الإبلاغ عن أي تضارب في المصالح مع جهات لا تعلمها هيئة التحرير يمكن أن يكون له تأثير على البحث. ومن أمثلة التضارب المحتمل في المصالح التي ينبغي الإخلاص عنها مثل العلاقات الشخصية أو المهنية، والانتصارات، والمعروفة في الموضوع أو المواد التي نوقشت في البحث.
7. المخاطر والمواد البشرية أو الحيوانية: إذا كان العمل ينطوي على استخدام مواد كيميائية أو إجراءات أو معدات لها أي مخاطر غير عادية، فيجب على المؤلفين تحديدها بوضوح في البحث. وكذلك إذا كان العمل ينطوي على استخدام أو إجراء تجارب على البشر أو الحيوانات في بحثهم، فيجب على المؤلفين التأكيد من أن جميع الإجراءات تم تنفيذها وفقاً للقوانين والتعليمات ذات الصلة وأن المؤلفين قد حصلوا على موافقة مسبقة بهذا الخصوص. وكذلك ويجب مراعاة حقوق الخصوصية الخاصة بالمشاركين من البشر.
8. التعاون: يجب على المؤلفين التعاون بشكل كامل والاستجابة الفورية لطلبات المحررين بشأن البيانات الأولية والتوضيحات وإثبات المواقف الأخلاقية وموافقات المرضى وأنواع حقوق الطبع والنشر. وفي حالة اتخاذ قرار أولي بشأن إجراء التعديلات الضرورية على البحث، يجب على المؤلفين الاستجابة للاحتجاجات المحكمين بشكل منهجي ويقوموا بإجراء التعديلات المطلوبة وإعادة تقديمها إلى المجلة بحلول الميعاد النهائي المحدد.
9. الأخطاء الأساسية في الأعمال المنشورة: عندما يكتشف المؤلفون أخطاء كبيرة أو عدم دقة في أعمالهم المنشورة، فإن عليهم الالتزام بإخطار محرري المجلة أو الناشر فوراً والتعاون معهم إما لتصحيح البحث أو سحبه.

رئيس هيئة تحرير مجلة مؤة للبحوث والدراسات

الأستاذ الدكتور أسامه عيسى مهاوش

عميد البحث العلمي

جامعة مؤة

الرمز البريدي (61710) مؤة / الأردن

Tel: +962-3-2372380 Ext (6117)

Fax. +962-3-2370706

Email: darmutah@mutah.edu.jo

مُؤْتَهُ لِلِّبْحُوثِ وَالدِّرْاسَاتِ

مُجْلِسُ عِلْمَيْهِ مُحَكَّمَةٌ وَمَفَهْرِسَةٌ تُصْدَرُ عَنْ

عمادة البحث العلمي

جامعة مؤتة

قسمة اشتراك

أرجو قبول اشتراكِي في مجلة مؤتة للبحوث والدراسات:

سلسلة العلوم الإنسانية والاجتماعية سلسلة العلوم الطبيعية والتطبيقية

..... العنوان : (الاسم :) (للمجلد رقم)

التاريخ : التوقيع : 200 / /

طريقة الدفع : شيك حواله بنكية حواله بريدية

أ - دخل الأردن : للأفراد (9) دنانير أردنية.

للمؤسسات (11) ديناراً أردنياً.

ب - خارج الأردن (للأفراد والمؤسسات): (30) دولاراً أمريكياً.

ج- للطلبة: (5) دنانير سنوية

د - تضاف أجرة البريد لهذه الأسعار.

تملأ هذه القسمة، وترسل مع قيمة الاشتراك إلى العنوان التالي:

رئيس هيئة تحرير مجلة مؤتة للبحوث والدراسات

الأستاذ الدكتور أسامة عيسى مهاوش

بد البحث العلم

جامعة مؤتة

الرمز البريدي (61710) مؤتة / الأردن

Tel: +962-3-2372380 Ext (6117)

Fax. +962-3-2370706

Email: darmutah@mutah.edu.jo

المحتويات

28-13	معادلات هايزنبرغ الكسرية لتفاعل يوكاوا العددي أمل فرحان المعaitة	*
44-29	تأثير موعد الترهير على انتاج الحبوب لنبات التريتيكالي (X) Triticosecale Wittmack) ذكر يا العجلوني، ابراهيم البسيوني، فيacas بيلاماكر، ستيف بيتر بينزيرج	*
62-45	خوارزمية فك ترميز أو تشفير جزيئات المعلومات حسب القيم المطلقة لجزيئات المعلومات باستخدام مفكك تشفير التجزئة والمترابطة سيف عناد النوايسة	*
90-63	تحليل أداء الخلية الشمسية المعتمدة على Si/SiGe ذات الشكل الهرمي: دراسة باستخدام المحاكاة زياد الطراونة، مصطفى محيلان	*
38-13	الإدارة المتكاملة للمناطق الساحلية: رؤية للتقدم في التنفيذ على الساحل الأردني من خليج العقبة محمد الزبدة، محمد بدران	*

الإدارة المتكاملة للمناطق الساحلية: رؤية للتقدم في التنفيذ على الساحل الأردني من خليج العقبة

محمد الزيدة*

محمد بدران

ملخص

منطقة العقبة ذات أهمية استراتيجية كبيرة للأردن، فهي تمثل المنفذ البحري الوحيد للبلد على العالم. من الأساسي والحال هذه أن يتم استيعاب كل الانشطة الضرورية فيها كذلك المتعلقة بالصناعة والتجارة والسياحة، وبذات الوقت أيضا يتم الحفاظ على البيئة البحرية النادرة والمتواجدة في منطقة ضيقة جغرافيا. يستلزم ذلك تدابير خاصة تبدأ بالخطيط الجيد الذي يتبعه التنفيذ المؤسسي. وبخلاف ذلك ستكون هناك صعوبات في وجه الاستغلال الامثل للمساحات والموارد في المنطقة وهي الشحية اصلا. أدرك الأردن ضرورة اتباع خطة متزنة وبطريقة متكاملة للتعامل مع المنطقة الساحلية والموارد الطبيعية المتوفرة. تضمنت الخطة نهجا واضحا يهدف إلى تنسيق الأنشطة الساحلية لضمان أفضل توافق ممكن وتطوير الساحل الأردني بما يحقق المصالح والأهداف الوطنية الشاملة. كان من أبرز سمات الخطة ما عملت عليه سلطة منطقة العقبة الاقتصادية الخاصة بتنفيذ برنامج وطني لرصد البيئة البحرية والمحافظة على الموارد الساحلية. فقد بدأ المشغلون بالبيئة ومسؤولي الموارد الساحلية في العقبة بتحديد وفهم العناصر المحركة لعجلة التطوير البيئية منها والاقتصادية والاجتماعية. وقد تجسد ذلك بوضع اليات تطبيقية ساهمت في الحفاظ على الشعب المرجانية كأولوية وطنية ذات أبعاد عالمية، ووضع حلول عملية لاستدامة التنوع الحيوي البحري على الساحل الأردني. فقد كان للأنشطة الراهنة وال المتعلقة بالبحوث البيئية وإدارة الموارد وكذلك التعاون الوطني والإقليمي لتبادل المعلومات دور كبير في تطبيق الامثل بالموارد البحرية المختلفة على الساحل الأردني من البحر الأحمر. ومن أجل إدارة مستدامة على الساحل الأردني لخليج العقبة كان لا بد من توطيد العلاقة فيما بين المؤسسات ذات الصلة على الصعيد الوطني وكذلك مع الدول المجاورة.

الكلمات الدالة: الإدارة الساحلية المتكاملة، البيئة البحرية، الرصد البيئي، خليج العقبة، البحر الأحمر

* كلية العلوم البحرية، الجامعة الأردنية، العقبة، الأردن.

تاريخ قبول البحث: 16/8/2019م.

© جميع حقوق النشر محفوظة لجامعة مؤة، الكرك، المملكة الأردنية الهاشمية، 2021م.

Integrated Coastal Zone Management: A Vision for Progress in Effective Implementation in Aqaba, Jordanian

**Mohammad Al-Zibdah
Mohammad Badran**

Abstract

Aqaba is of great strategic importance to Jordan and represents the country's only maritime outlet to the world. It is therefore essential to establish balanced management of all coastal activities such as those related to industry, trade, fishing and tourism, while at the same time protect the valuable marine environment at such a geographically narrow area. Practical measures have thus been put in place to institutionalize planning and implementation, responding to the need for a plan that deals with effectively executing the coastal zone activities together with preserving the natural resources. This is to support a broader set of national objectives targeting optimum non extractive exploitation of the Jordanian coastal resources. An important tool for keeping activities under regular check has been the implementation of the National Coastal Environment Monitoring Program. The Program has been regularly undisturbed running since 1999. It is supported by the Aqaba Special Economic Zone Authority "ASEZA" and executed by the Marine Science Station "MSS" of the University of Jordan and Yarmouk University. It is a legal obligation of ASEZA established in the Law 32 of the year 2000 and Regulation 21 of the year 2001 for protection of the environment. The present paper discusses the main features of the currently applied coastal zone management practices and attempts to identify improvements that need closer attention. In addition to national efforts sound coastal zone management is heavily dependent on regional and international cooperation. Qualified personnel, adequate commonly applied monitoring techniques, effective exchange of information and of management resources are essential for an ecosystem based approach management.

Keywords: ICZM, marine environment, monitoring, Gulf of Aqaba, Red Sea

المقدمة:

تحتل مدينة العقبة موقعاً مهماً باعتبارها البوابة البحرية الوحيدة للأردن على العالم الخارجي. وكون المنطقة ضيقة جغرافياً كان لا بد من استيعاب جميع الأنشطة الاقتصادية مثل الصناعة، التجارة والسياحة وذلك مع الحرص على حماية البيئة البحرية من خلال تطوير النمط المناسب من الإدارة المتكاملة للمنطقة الساحلية.

تم في عام 1960 التوصل إلى اتفاق بين المملكة الأردنية الهاشمية والمملكة العربية السعودية بشأن إعادة ترسيم الحدود بينهما، ونتج عن ذلك تمدد الخط الساحلي الجنوبي للعقبة بحوالي 17 كم إضافي للأردن. وخلال تلك الحقبة، لم يتأثر خليج العقبة نسبياً بالتنمية إلا أنه أصبح حديثاً مركزاً دولياً استراتيجياً، وذلك لوجود المرافق الصناعية الرئيسية وانشطة النقل البحري، والتوسيع السريع للسياحة. لذلك، عمد الأردن في العقدين الأخيرين إلى انتهاج نمط من الإدارة الساحلية يسمح باستغلال المنطقة الساحلية والموارد المتوفرة بالطاقة المثلثي وذلك بإيجاد أفضل تناغم ممكن بين الاهتمامات المختلفة لاستخدامات الشواطئ بحيث يدعم كل المرافق التي يراد تطويرها على الساحل الأردني لخليج العقبة

(MSS, 2017; AEAP, 2000; World Bank, 1993; DOS, 2006; 2013; Al-Zibdah, 2013)

فقد تم إتباع نهجاً مؤسسيّاً في الإجراءات الإدارية المتعلقة بالبيئة البحرية يمنع الاستزاف الجائر للموارد وينظم استخدام المساحات المتاحة على الشريط الساحلي (Al-Zibdah et al., 2006; PERSGA, 2006; World Bank, 1996; Sanders, 1996).

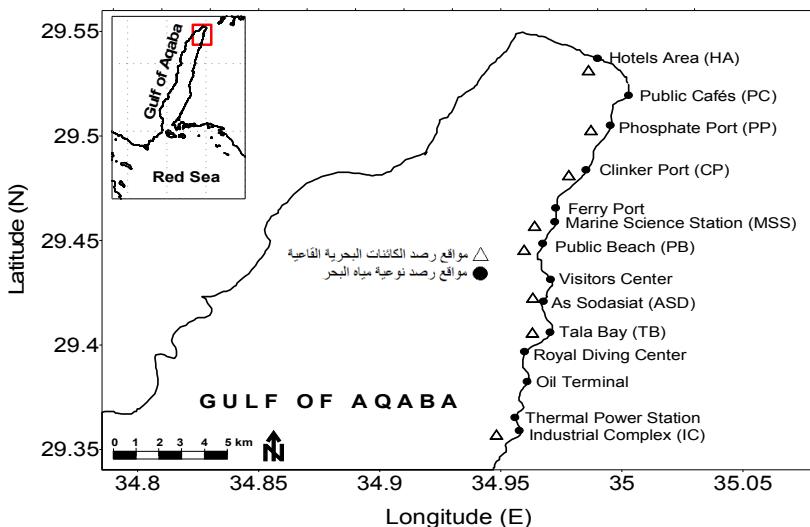
تتناول هذه الدراسة خصائص بيئة العقبة البحرية وبيان مدى أهميتها والمحافظة عليها، وكيفية الاستغلال الأمثل للموارد المتاحة، وذلك سعياً لاستدامتها. كما تعكف الدراسة أيضاً على بيان دور المؤسسات الحكومية والخاصة في تطوير إدارة ساحلية قائمة على التعاون والتناغم بين أصحاب المصلحة المتعددين لإيجاد التوازن المنشود في استثمار وادارة الموارد.

لقد كان لإنشاء سلطة منطقة العقبة الاقتصادية الخاصة دور أساسى في تسريع وتيرة الاستثمار في المنطقة بهدف تحسين نوعية المعيشة وتعزيز الرخاء لمنطقة العقبة وكذلك للاقتصاد

الوطني وذلك في إطار تربية شاملة ومستدامة باعتبارها محرك النمو الرئيس لتحقيق التحول المجد اقتصادياً. ويتم في هذه الدراسة مناقشة مواضيع عدة ذات صلة بهدف التحقق من نجاعة تأسيس قاعدة عملية لإدارة ساحلية مستدامة قائمة على تدعيم العمل المشترك محلياً واقليمياً بما يتلاءم مع أهداف الإدارة الساحلية المتكاملة في خليج العقبة.

المواد والطرق المستخدمة:

اعتمدت الدراسة على طريقة التحليل الوصفي باستخدام البيانات المتوفرة في الدوائر الرسمية كسلطة منطقة العقبة الخاصة وشركة تطوير العقبة ومؤسسات تنموية أخرى كالموانئ وشركات القطاع الخاص وكذلك أصحاب المصلحة الآخرين. فقد تم القيام بزيارات ميدانية وعمل مقابلات لاستقصاء القضايا والظروف الاقتصادية والبيئية ومن ثم تحليلها على أساس التوعي بالموارد ذات الاستخدامات المتعددة على طول الشريط الساحلي الأردني لخليج العقبة.


كما تم جمع بيانات خاصة ببرامج مراقبة البيئة البحرية والقياسات الميدانية التي تتفذ بشكل مستمر ومنتظم لصالح سلطة منطقة العقبة الاقتصادية الخاصة وتنفذها محطة العلوم البحرية التابعة للجامعة الأردنية واليرموك منذ عام 1999 ويتم مراجعتها وإدخال بعض التعديلات عليها بين فترة وأخرى.

إضافة إلى ذلك، تم الاطلاع على العديد من الأبيات العلمية المتوفرة من عدة مصادر وتحليلها ومناقشتها بهدف تحديد القضايا الملحة بهدف تحقيق أفضل الممارسات البيئية والإدارية للمنطقة الساحلية في العقبة. وكذلك بهدف تحقيق الاستفادة من الموارد المتاحة والاستغلال الأمثل والمستدام للنافذة البحرية الوحيدة في الأردن. كما تم مراجعة وبيان الاجراءات البيئية والإدارية القائمة حالياً على الساحل الأردني كنموذج من تكامل إدارة الموارد والأنشطة العلمية البحرية. وعليه فإن الأفكار والمعلومات التي سيتم مناقشتها تالياً يمكن اعتبارها أبرز عناصر الإدارة الساحلية الفعالة التي تهدف تحقيق ديمومة التنمية وتوافق مع استراتيجية الإدارة الرشيدة للمنطقة الساحلية الأردنية. وتشكل هذه الدراسة دعوة لمزيد من الجهد في هذا الإطار، لا سيما في ضوء ما يجري نداوله حول قيام مشاريع تنموية عملاقة على خليج العقبة مثل مشروع نيوم.

النتائج والمناقشة:

خليج العقبة هو الفرع شبه المغلق الشمالي الغربي من البحر الاحمر ويتدلى حوالي 180كم. يتراوح عرضه ما بين 5 الى 26 كم ويصل الى عمق يزيد قليلا عن 1800م وبمتوسط حوالي 800م، وهو متصل بالبحر الاحمر عند مضيق تيران الذي يشكل مياه ضحلة ويضم جزر سنافر .(Manasrah et al., 2007; Manasrah et al., 2004; Sheppard et al., 1994).

يشكل الشريط الساحلي الاردني 7%， من مجمل طول جانبي الخليج وتعتبر العقبة الميناء البحري الوحيد في الاردن، كما انها تحتل موقعا استراتيجيا لقربها من الطريق عبر أوروبا، آسيا وافريقيا. يبين الشكل 1 الساحل الأردني من خليج العقبة والموقع المستخدمة في برنامج المراقبة الوطني للبيئة الساحلية.

الشكل (1) الساحل الأردني من خليج العقبة والموقع المستخدمة في رصد نوعية مياه البحر والموائل البحرية القاعية

الطوبغرافيا المحيطة بخليج العقبة ذات اشكال غير منتظمة، تتباين في الارتفاع ويصل اقصاها على الجانب الغربي الى حوالي 1200م فوق سطح البحر (Al-Rousan et al., 2005). ويكون النظام المائي السطحي للمنطقة الأردنية من خليج العقبة من اثنين من المستجمعات المائية الرئيسية. هذه المستجمعات هي وادي اليتم ووادي عربة

(World Bank, 1993; AEAP, 2000). بالإضافة إلى ذلك، هناك مجتمعات صغيرة أخرى ناشئة من الجبال الصخرية الجنوبية المواجهة للشاطئ الجنوبي والتي قد تشكل مخاطرا محتملة لفيضانات في المناطق الصناعية والسكنية على الساحل الجنوبي (Al-Rousan, 2005). إلا أن وجود منطقة طينية مسطحة عند نهاية الانحدارات الصخرية يقلص حجم الفيضانات التي قد تصل إلى العقبة، حيث تعمل هذه المنطقة على خزن المياه المناسبة الناتجة عن الأمطار متعددة الكثافة (SOCER, 2017; AEAP, 2000; DOS, 2006).


استخدام الارضي والبعد الاجتماعي والاقتصادي في العقبة

ان القوة الدافعة الرئيسية لاستخدام الارضي في العقبة هي الطلب على الموارد المتوفرة والمتمنية بشكل أساسي بالواجهة البحرية. لا شك أن تحسين تخطيط وإدارة استخدام الموارد الطبيعية، يتطلب معلومات دقيقة حول المستجدات في استخدامات الارضي الحالية والمستقبلية، لتحديد الموارد الأرضية المتاحة، و المجالات استخدامها (DOS, 2006; AEAP, 2000; Munn, 1999). وذلك في ضوء ان العقبة تشهد زيادة مضطردة في عدد السكان كنتيجة حتمية للنمو الحضري. وبالتالي فان الطلب على الموارد الطبيعية من الارضي وكذلك المياه، والماء الخام يزداد بشكل مضطرب أيضا (Al-Zibdah et al., 2018; SOCER, 2017; DOS, 2006; AEAP, 2000; Crosby, 1997).

ولهذا عمدت الخطة الاستراتيجية والتي اقرت في بدايات نشأة سلطة منطقة العقبة الاقتصادية الخاصة إلى معرفة التغيرات المكانية والزمانية لاستخدامات الارضي وبالتالي الموارد المتاحة ومجالات الاستفادة منها. وقد ساعد ذلك صانعي القرار والمخططين لوضع السياسات المختلفة لتشمل خدمات البنية التحتية من مياه وطاقة وطرق والاستخدام المستدام للأراضي. في عام 2002، اعتمدت السلطة ايضا خطة رئيسية لتعزيز وتشجيع الاستثمار في المنطقة، وذلك في الصناعة، الموانئ، السياحة، التنمية السكانية، التنمية الأكاديمية والأنشطة الساحلية بما فيها المرافق الترفيهية (DOS, 2006; Al-Zibdah and Badran, 2004; AEAP, 2000).

لقد ازداد عدد سكان مدينة العقبة من 115 ألف عام 2005 إلى 142 ألف نسمة عام 2013، و يتميز المجتمع في العقبة أنه يافع، اذ ان أكثر من نصفه يقع ضمن الفئة العمرية 15-64 سنة (الشكل 2)، وتعتبر هذه التركيبة السكانية شبيهة بباقي مناطق المملكة (DOS, 2013; 2015).

يعود سبب النمو السريع في عدد السكان إلى عدة عوامل، لعل من أبرزها الهجرة من المحافظات الأخرى بحثاً عن فرص العمل و كنتيجة لتدفق العمالة الخارجية أيضاً، بالرغم من وجود مؤشرات عن ارتفاع معدل البطالة بشكل ملحوظ (الشكل 2) في العقبة، فقد كان في 2013 حوالي 15% مقارنة في 12% عام 2009 (DOS, 2013; 2015). وقد يرجع هذا إلى أن العقبة ربما تأثرت بباقي مدن المملكة بالحالة السياسية التي تشهدها المنطقة والهجرة القسرية من بعض الدول المجاورة .(DOS 2013; 2015)

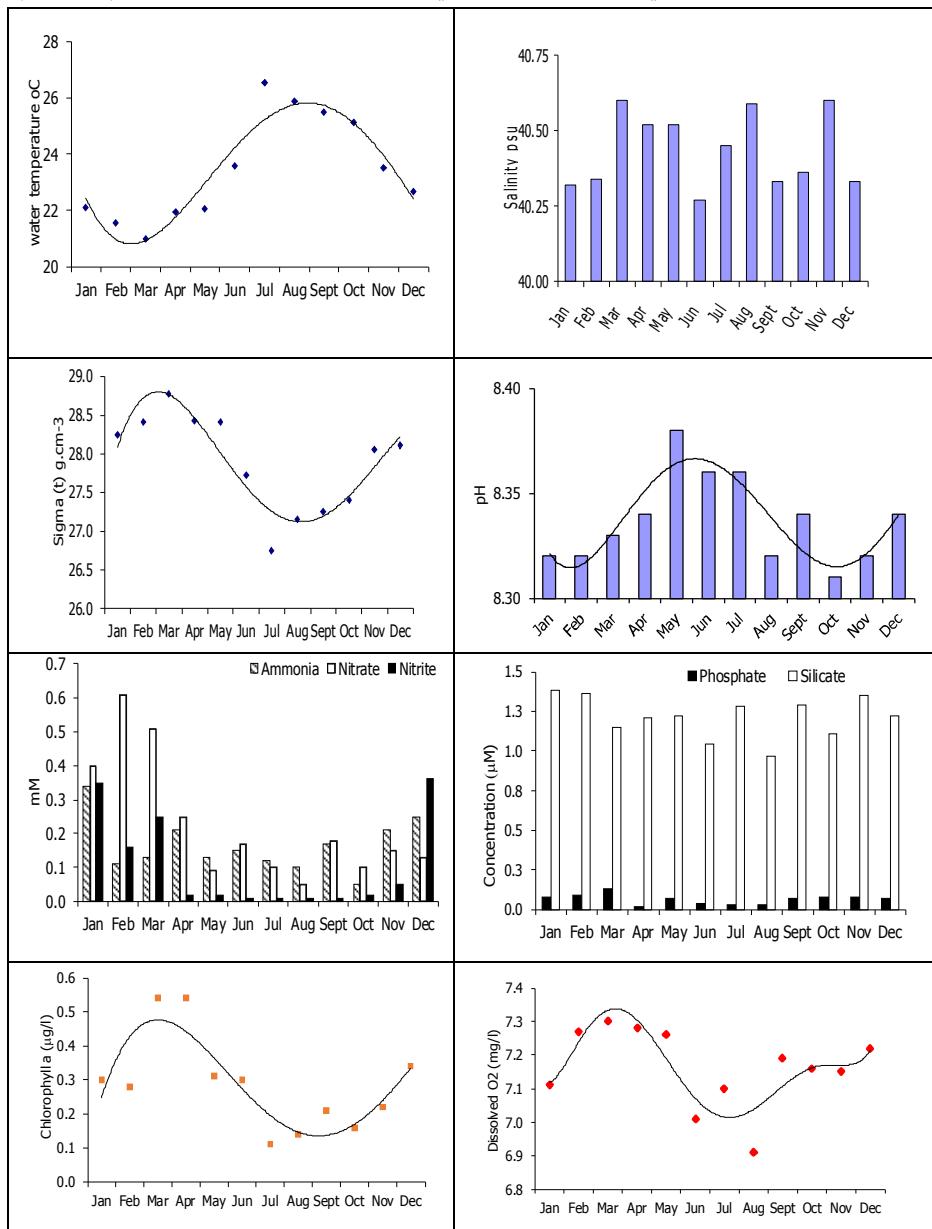
الشكل (2) النسبة المئوية للفئات المجتمعية في العقبة (أ) ومعدلات البطالة (ب) لعام 2013.
(المصدر: دائرة الاحصاءات العامة /الأردن، 2013).

الأبعاد الاقتصادية للموارد الطبيعية البحريّة

يعتبر خليج العقبة من الاجسام البحريّة الغنية بالتنوع الحيوي ويرجع ذلك بشكل كبير لخاصية مميزة وهي التنوع الاستثنائي للشعاب المرجانية وما يعيش معها من كائنات بحرية عديدة جداً بالرغم من كونه شبه مغلق. فقد لاحظ علماء تصنيف الكائنات الحية ان حوالي 50% من الخط الساحلي لخليج العقبة مغطى بالشعاب المرجانية والتي يزيد تنوّعها عن أكثر من 200 نوع من المرجان الصلب وأكثر من 10 انواع من المرجان اللين (Al-Socer, 2017; Al-Horani, 2013; Al-Horani et al, 2006; PERSGA/GEF, 2003) . هذا بالإضافة إلى وجود أكثر من 80 نوع من الرخويات والجلدشوكيات والامفيبيودا وجميعها متواطنة في خليج العقبة. كما ان الاعشاب والطحالب البحريّة موجودة على القيعان الرملية المجاورة للشعاب المرجانية، موفّرة بذلك حضانة مهمة لصغار الأسماك وغيرها من الرخويات والكائنات القاعية الأخرى

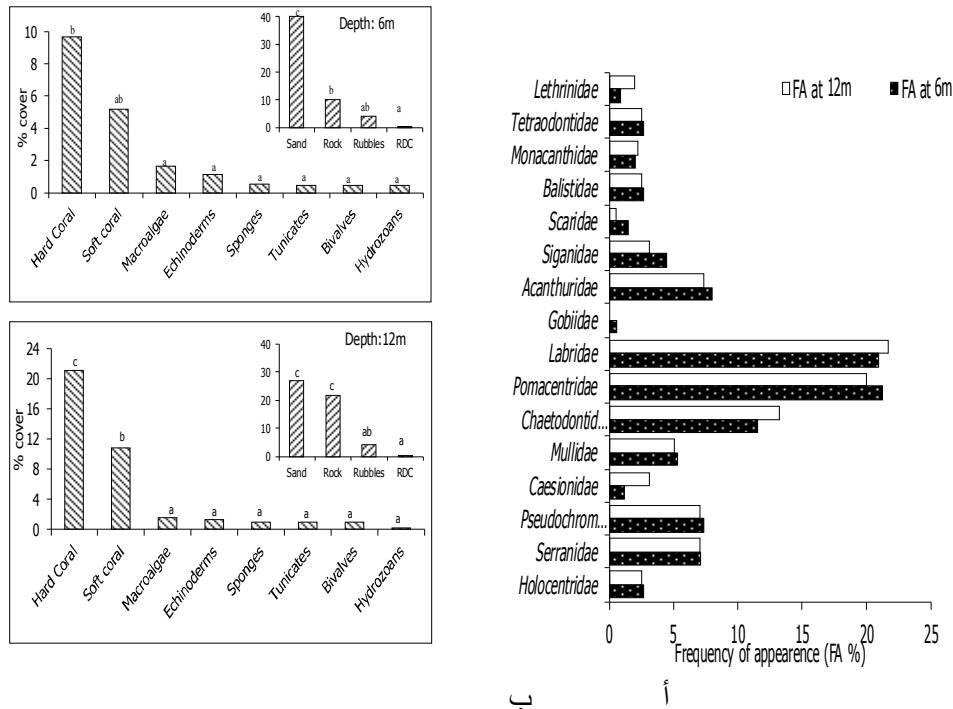
(Al-Horani, 2013; Al-Zibdah, 2008; Al-Horani et al., 2006; Hulings, 1989)

كما يزخر الحيد المرجاني في الخليج بأكثر من 500 نوع من الأسماك، مما يكسب الشريط الساحلي للعقبة شهرة كبيرة بين الأماكن المميزة للسباحة، والغوص على مستوى العالم.(Al-Zibdah & Badran, 2004; Khalaf 2004; Khalaf & Disi, 1997)


ت تكون الشواطئ من رمال خشنة بشكل عام ناشئة من تفكك وتحلل الصخور الأرضية حيث تصل إلى الشواطئ بواسطة مياه الفيضانات في الأودية، كما تتألف منطقة المد والجزر الصخرية من الحصى والألواح الصخرية (SOCER, 2017). وتتوارد في منطقة المد والجزر مجموعة من الكائنات البحرية المتنوعة والمتكيفة في السلوك حسب الظروف البيئية السائدة لهذه المنطقة، حيث تقسم إلى ثلاثة مجموعات على أساس الحجم، فمنها الكبيرة، المتوسطة، والدقيقة

الحية بما في ذلك الرخويات، القشريات، والطحالب الدقيقة والكبيرة، (SOCER, 2017; Al-Zibdah et al., 2006; Jibrin, 1986) برغم أن درجة الحرارة في منطقة المد والجزر تعد من أكثر الإجهادات البيئية الرئيسية، التي يمكن أن تؤثر على الكائنات البحرية (Badran & Foster, 1998; Hulings, 1989).

تجدر الاشارة إلى أنه لم تسجل أي حالة ابيضاض للحيوانات المرصودة عالمياً على الساحل الأردني، وتعزى هذه الظاهرة لعوامل التغير المناخي والاحتباس الحراري. وربما يفسر عدم الابيضاض على الساحل الأردني لوجود خليج العقبة على خطوط العرض شبه المدارية الشمالية وهي أقل دفئاً مقارنة بتلك الموجودة في البحار الاستوائية (Manasrah et al., 2004).


مياه خليج العقبة فقيرة بالمغذيات ومحدودة الدوران فالتيارات المائية متغيرة الاتجاه مع هيمنة ضعيفة لحوامات دائيرية متباعدة الاتجاه نحو الجنوب الشرقي والجنوب الغربي، 135-225°. وتتراوح سرعتها ما بين 4.0 إلى 15.0 سم/ثانية على طول الساحل (Manasrah et al, 2004; Manasrah et al., 2015). كما أن هناك مؤشرات كثيرة أصبحت راسخة للصفات الفيزيوكيميائية لمياه خليج العقبة أهمها التباين الموسمي في درجة حرارة المياه بين 20.5-27.5 °C (Badran et al., 2005; Rasheed et al., 2002). وأنه وبسبب التبخر العالى، وعدم وجود جريان للمياه العذبة، فضلاً عن انخفاض تساقط الامطار، فإن الملوحة تصل إلى 40-

41.5 psu وهي قيمة مرتقدة نسبياً مقارنة بمياه المحيطات. وقد وجد أيضاً ان تركيز الكلوروفيل في المياه الساحلية يتراوح بين $1.2-0.05 \mu\text{g l}^{-1}$ (Badran et al., 2001; Badran et al., 2005; Badran & Al-Zibdah, 2005) وكذلك فإن الأملاح الغذائية جميعها تعتبر ذات تركيز منخفضة وفي مستويات مياه أعلى المحيطات والجود المرجانية (الشكل 3)

شكل (3) الخصائص الفيزيوكيميائية لمياه خليج العقبة. المصدر: برنامج المراقبة الوطني لآخر خمس سنوات

بالمجمل فإن خليج العقبة يحوي موارد اقتصادية عالية القيمة، فضلاً عن أنه يعتبر شبه استوائي ويتّوّع حيويّاً كبيراً (الشكل 4). وهو البحر الأقرب جغرافياً وبهذه الصفات إلى أوروبا، مما يزيد من فرص الاستثمار المتّوّعة والسياحية على وجه الخصوص .(Al-Zibdah et al., 2007; SOCER, 2017)

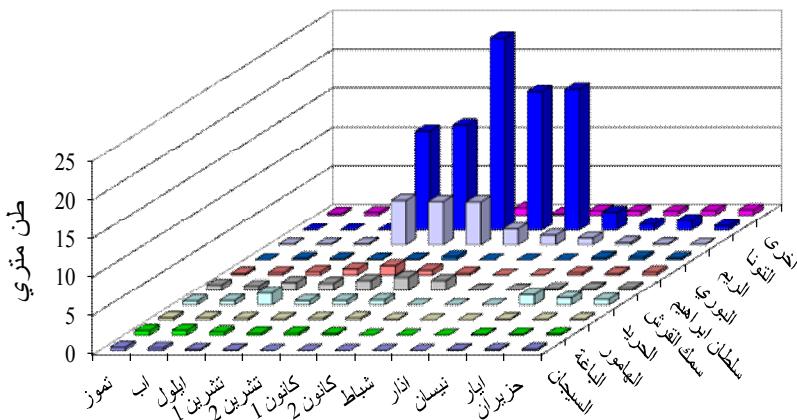
(الشكل 4: أ) متوسط الغطاء المطلق (%) للمرجان الصلب واللّيin وبعض الكائنات القاعية المختلفة في عمقين من عدة مناطق من الساحل الاردني (NMP, 2017). الأعمدة التي تحمل أحرف غير متشابهة تختلف جوهرياً $P < 0.05$. ب) تكرار (FA%) ظهور عائلات الأسماك في 6 و12 م عمق على الساحل الأردني من خليج العقبة

كما أن هناك اهتمام متزايد بالموارد البحرية المختلفة في خليج العقبة وما يرتبط بها من الأنواع كمصدر لاستخلاص المواد النشطة بيولوجيا والمستحضرات الصناعية ذات التطبيقات الصيدلانية، وكذلك في التربية البحرية (Al-Zibdah, 2013; Al-Zibdah, 2014).

بدأت المراقبة المستمرة للبيئة الساحلية في الجانب الأردني من خليج العقبة منذ 20 عاماً. وخلال التنفيذ طويلاً الأمد لبرنامج المراقبة الوطني فقد تم تطوير قاعدة بيانات تفصيلية بهدف خدمة التنمية وتوفير المعلومات الأساسية لمشاريع الاستثمار التي تقام على الساحل الأردني. وهي ذات أهمية كبيرة أيضاً لتقدير الأثر البيئي للنمو السريع والمطرد في المنطقة، حيث يمكن الاستعانة بها كإنذار مبكر لاي تغيرات يمكن أن تطرأ على البيئة البحرية كنتيجة لأنشطة المختلفة على الساحل. وبإيجاد سلطة منطقة العقبة الاقتصادية الخاصة كان برنامج المراقبة الوطني منسجماً مع قانون السلطة رقم 32 لعام 2000 وجزءاً من واجباتها بموجب نظام حماية البيئة ونظام متنزه العقبة البحري رقم 21 و 22 لعام 2001، ويهدف إلى ضبط والحد من الآثار السلبية المحتملة على الموارد البحرية. كما أن نظام البيئة يحدد آلية ترخيص المشاريع التنموية ويبين المشاريع التي تحتاج إلى تنفيذ تقييم الأثر البيئي الشامل للمشاريع الاستثماري التي تنشأ في المنطقة (UNDP, 2015; SOCER, 2017).

وقد كان للبنك الدولي ومرفق البيئة العالمي (GEF) دور مهم، عندما انبثقت خطة العمل البيئية لخليج العقبة كنتيجة للتعاون فيما بين سلطة منطقة العقبة والبنك الدولي. وكان من أبرز نتائج الخطة، تنفيذ برامج المراقبة بشقيها لنوعية الهواء ونوعية مياه البحر (الشكل 1). وقد تم اعتماد محطة العلوم البحرية التابعة للجامعة الأردنية واليرموك باعتبارها المؤسسة الوطنية المؤهلة لتنظيم وتنفيذ برنامج المراقبة الوطني للبيئة الساحلية (AEAP, 2000). يهدف هذا البرنامج المستدام بشكل رئيسي إلى توفير معرفة دقيقة عن نوعية مياه البحر وخصائص الرسوبيات الساحلية وأنماط التنوع الحيوي البحري لتقدير التغيرات التي يمكن أن تطرأ في هذه المؤشرات، وكذلك تقييم الخصائص البيئية وتوزيعات الكائنات النباتية والحيوانية على طول الشريط الساحلي وبشكل دوري (AMP, 1999-2019). لقد كان التركيز في بداية البرنامج على مراقبة الخصائص الطبيعية في عدة مواقع على الشاطئ إلا أنه قد توسع لاحقاً ليشمل مياه المرافئ والبحيرات الصناعية مثل حوض نادي اليخوت الملكي، تالا بي وواحة ايلة، بهدف مقارنة المؤشرات البيئية في هذه المناطق شبه المغلقة والتغيرات التي نطرأ بداخلها مع البيانات

الأساسية في البيئة الساحلية المفتوحة (Manasrah et al., 2004; 2015; Rasheed et al., 2018; NMP, 2018).


يمكن أن يستخلص من البرنامج الوطني لمراقبة البيئة الساحلية أن التلوث في خليج العقبة يكون محدوداً وموضعياً في حال حدوثه. وتبقى هناك مهددات محتملة بشكل جاد يمكن أن تتجدد عن الانسكابات النفطية والمخلفات الصناعية وحوادث تسرب الصرف الصحي القسرية والتلوث بالنفايات الصلبة على الشواطئ التي يمكن أن تنشأ في موضعها نتيجة لبعض السلوكيات والتي ربما تأتي أيضاً عن طريق السفن أو تسوقها للت刺ارات من أماكن أخرى (Abu Hilal and Al-Najjar, 2012; Sandlers, 1994). كما أن تسارع النمو في القطاع السياحي والأنشطة الترويجية المرافقة قد يشكل مهدداً إضافياً للشعب المرجانية (Al-Horani & Khalaf, 2013). وقد أتم البرنامج عشرين عاماً بنهاية 2019 من توفير المعلومات الأساسية عن البيئة الساحلية للجانب الأردني من خليج العقبة. وهذا يقتضي إتاحة البيانات للمهتمين والباحثين على التحليل التفصيلي لهذا المخزون المعلوماتي المتوفّر بحيث يمكن التعرّف على الأنماط الموسمية المعينة للمسارات البيئة البحرية والتي يمكن البناء عليها في اعتماد خطط طويلة الأمد لإدارة الموارد الساحلية في الأردن. وبالرغم من أن برنامج مراقبة البيئة الساحلية جاء داعماً أيضاً لمنتزه العقبة البحري على الشاطئ الجنوبي ولغايات حفظ وحماية البيئة البحرية الطبيعية القريبة من الشاطئ، ورغم أن متنزه العقبة البحري يعامل معاملة محمية البحرية على المستوى الوطني والإقليمي، إلا أنه ليس هناك حتى الآن محمية بحرية في الأردن قائمة بموجب نظام لحماية بحرية يحدد استخداماتها لأغراض التنمية المستدامة والتي من خلالها قد يتم توفير الحماية الضرورية للموارد الساحلية مما يسهم في التوسيع ابادياً سقاط السياحة البيئية الداخلية والخارجية. شارك المنظمات غير الحكومية (NGO's) أيضاً في انشطة المراقبة البيئية الساحلية، وتعمل كذلك على مواكبة المبادرات العالمية لحفظ وحماية البيئة البحرية في خليج العقبة. وكأمثلة لنشاط هذه الجمعيات، القيام بحملات النظافة للشواطئ وقاع البحر. وهناك ما لا يقل عن ثمان جمعيات أهلية تنشط حالياً في المشاركة بحماية البيئة على الساحل الأردني، ومن أبرزها الجمعية الملكية لحماية البيئة البحرية (JREDS)، إذ شارك في الترويج للأنشطة التي تشجع السياحة البيئية من خلال مشاركتها في المشاريع اليورومتوسطية وبرامج عالمية مثل المفتاح الأخضر والعلم الأزرق والمعترف بها كممارسات للبيئة الخضراء دولياً. كما أن جمعية البيئة الأردنية، جمعية اصدقاء

الشاطئ وجمعية الهلال الأحمر الأردنية، واتحاد لجان المرأة وجمعيات الصيادين والقوارب الزجاجية والغواصين يساهمون جمِيعاً بهذه الانشطة أيضاً. هذه المشاركة تسهم وبشكل كبير في تعظيم بناء القدرات ورفع الوعي البيئي لأصحاب المصلحة في العقبة وللزائرين المحليين والأجانب. وتعتبر هذه الجمعيات موضوع الحفاظ على البيئة البحرية من الأمور بالغة الأهمية إذ أن العديد من منتسبيها يستمدون رزقهم من البيئة الساحلية والشعاب المرجانية كمورد مهم يجب حمايتها وديموتها (AEAP, 2000; SOFER, 2017). كل الجمعيات في العقبة تحظى بالدعم الرسمي من خلال مؤسسات متعددة وتعملون بشكل مباشر مع سلطة منطقة العقبة الاقتصادية الخاصة.

مصائد الأسماك وتربية الأحياء المائية في خليج العقبة

يوجد ما يقارب 260 صياد مرخص، يعملون على حوالي مائة وخمسين من القوارب الصغيرة والمتوسطة الحجم، ويستخدمون معدات الصيد البسيطة مثل الخيوط بأنواعها، الأقفاصل، والشباك الخيشومية (Al-Ma'ayta, 2015; Al-Zibdah et al., 2007). ويتركز مجهود الصيد على الأسماك القاطنة حول الشعاب المرجانية (Al-Ma'ayta, 2015; Al-Zibdah, 2015; Ministry of Agriculture, 1994; 1996). ويوجد في العقبة موقع إنزال واحد للمصيد حيث يتم الإنزال عند غروب الشمس (Al-Ma'ayta, 2015)، وعادة ما يكون هناك تفاوت ملحوظ في حجم الإنزال مما يؤدي إلى تذبذب في استهلاك الأسماك المحلية من موسم إلى آخر (الشكل 5). وتجدر الإشارة أن حجم المصيد من الأسماك المحلية يسهم بأقل من 2% من إجمالي استهلاك الأسماك في الأردن، علماً أن معدل استهلاك الفرد من الأسماك يقارب 2.7 كغ/فرد/سنة وهو ضعيف جداً مقارنة بمعدل الاستهلاك العالمي الذي يبلغ 13 كغ/فرد/سنة (Al-Ma'ayta, 2015; Al-Zibdah et al., 2007).

وقد طبقت حتى فترة قريبة تعليمات صيد النافذة قديمة تم إقرارها قبل ثلاثة عقود. لكن العمل قد تم على إصدار تعليمات جديدة استناداً إلى قانون الزراعة رقم 13 لسنة 2015 وشارك في إعداد هذه التعليمات شريحة واسعة من أصحاب المصلحة ضمت الجهات الحكومية والمنظمات غير الحكومية بحيث شارك الصيادون أنفسهم في صياغة هذه التعليمات وكذلك الجهات العلمية والمرافق السياحية والصناعية والموانئ، وقد صدرت هذه التعليمات في عام 2020 ولا زال العمل قائماً على إعداد قوائم تحدد الأصناف البحرية المهددة بالانقراض في خليج العقبة.

الشكل (5) حجم الازال الشهري لاسماك الشائعة في المصيد على الساحل الأردني لخليج العقبة (Al-Zibdah et al., 2007)

بالسنة للزراعة البحرية، فهناك محاولات محدودة للاستزراع المائي الساحلي في العقبة وربما يكون السبب الرئيس متمثل بقصر الشريط الساحلي والتلوّع في منشآت الموانئ، المرافق السياحية، وكذلك التخوف من الآثار البيئية المحتلّة. أدى هذا بالطبع إلى فرض قيود على أي توجّه لإنشاء مشاريع اقتصادية لتربية الأحياء المائية. ورغم ذلك، كانت هناك جهود بحثية قامت بها محطة العلوم البحرية في العقبة، من خلال مشاريع دولية ووطنية لتربية الأحياء البحرية والتي بدأت قبل ما يناهز عقدين من الزمان، حيث تم استزراع سمك القاروص *Dicentrarchus labrax* وأسماك الدنيس *Sparus aurata*. وهناك دراسات أيضاً حول تربية الأحياء المائية الصديقة للبيئة، والتي تعتبر سلعة ذات قيمة عالية ولا تضرّ البيئة ومنها استزراع المحار العملاق *Tridacnidea* (Al-Zibdah, 2015). فقد أظهرت النتائج، إمكانية استخدام هذا النوع اقتصادياً (Al-Zibdah, 2015). كما أدخل خط بحثي آخر لإدخال التكنولوجيا الحديثة للتربية والمتصلة باستخدام الانظمة المغلقة للاستزراع البحري (الشكل 6) من أجل مستقبل مستدام لتربية الأحياء المائية (Zibdah, 2014).

الشكل (6) نظام تدوير الاستزراع البحري (Mega Flow) في محطة العلوم البحرية/العقبة، يتكون من 3 أحواض سعة 5000 لتر مجهز بفلتر حيوي هوائي وآخر لاهوائي

الأنشطة الاقتصادية في العقبة

تميز الساحل الأردني بالتطور السريع خلال العقدين الماضيين. وربما كان الانتاج الصناعي المصدر الأكبر للإيرادات في العقبة، اذ تجاوزت الإيرادات السنوية 132 مليون دينار خلال عام 2013 من صناعة الاسمنت و عمليات التعدين. ويعتبر ميناء العقبة ايضا المشغل الاكبر للأيدي العاملة في العقبة، ويضم ما يزيد عن 3000 عامل اذ يتعامل الميناء مع ما يقارب 15-25 مليون طن من البضائع سنويا. اما صادرات الفوسفات فبلغت 7 مليون طن وبحمولة إجمالية 1.5 مليون طن ومن املاح البوتاس 1.2 مليون طن وان الواردات عبر الميناء في 2013 حوالي 19 مليون طن (2013). السياحة تشكل ايضا قوة رئيسية في العقبة حيث تلعب دورا مهما في الاقتصاد، فهناك العديد من المشاريع السياحية العملاقة مثل خليج تala على الساحل الجنوبي وواحة أيلة على الساحل الشمالي. وقد عملت هذه المشاريع على ايجاد سواحل اصطناعية إضافية زادت عن 17 كيلومتر حيث تم بناء المنتجعات السياحية والسكنية المختلفة عليها. وتمثل العقبة المستوى الثاني في اقامة الفنادق بعد العاصمة عمان (DOS, 2006; 2013) حيث يعتبر ساحل البحر الأحمر هو العامل الرئيسي في جذب الزوار الى العقبة، اذ تتميز مياه البحر بالصفاء البلوري وبوجود الخليفة الجبلية الخلابة والشواطئ المتنوعة بين الصخرية والرملية والمناخ شبه الاستوائي الدافئ والمشمس على مدار العام، وجميعها تساعد في تعزيز مكانة العقبة كوجهة ترفيهية سياحية.

وكعلامات بيئية للتشييط السياحي في المدينة، يطبق برنامجان للتوصيم البيئي التحفيزي، وهو المفتاح الأخضر، وهو علامة بيئية يتم اعتمادها للمشاريع السياحية بعد تطبيق معايير بيئية محددة ومستدامة لمرافقها، وكذلك العلم الأزرق وهو علامة بيئية حصرية تطبق على المواقع الشاطئية بحيث تخضع للتقدير والرصد المستمر. وقد اعتمدت العديد من المرافق السياحية في العقبة أحدي هاتين العلامتين أو كليهما عن قناعة بأن هذين البرنامجين مفیدان في حماية البيئة وفي استقطاب المزيد من الزوار لمدينة العقبة (JREDS, personal communication).

الوضع الراهن في العقبة

تعمل سلطة منطقة العقبة الاقتصادية الخاصة وذراعها الاستثماري شركة تطوير العقبة بشكل مستمر على تحديد الأولويات الاستثمارية والقضايا العملية المرتبطة بها وكذلك على السعي لفهم أثر الأنشطة البشرية على الموارد البحرية والساخلية. ونتيجة لذلك يتم التحديث المستمر لاستراتيجيات الادارة وتطوير الخطط للشريط الساحلي بأكمله. يشمل ذلك التوسع في الموانئ وإعادة توزيعها والصناعات والمنتجعات السياحية، وبذات الوقت الأخذ بعين الاعتبار المحافظة على الموارد البحرية الطبيعية في خليج العقبة، ومراعاة القيم الثقافية والتراثية في المدينة DOS (2013; 2006; Port Corporation Report, 2013). فقد تم التعامل مع الاستخدام المتعدد لساحل خليج العقبة بدرجة معقولة من التوازن بين أصحاب المصالح المختلفة، الامر الذي وفر اطارا واقيا لعمل مختلف المستخدمين وأوجد إمكانية تقييم الأولويات وتحديد نوعية و مدى استخدام الموقع المختلفة على ساحل خليج العقبة. وقد تتنوع الأسلوب المتبعة لهذه الغاية من خرائط استخدام الأرضي إلى التخطيط المكاني "Spatial Planning" الذي استخدم حديثا من خلال أحد المشاريع المدعومة من مرفق البيئة العالمي (GEF) وبالتعاون مع برنامج الأمم المتحدة الإنمائي (UNDP).

ومع ذلك لا يخلو الامر من ثغرات قد تنشأ حول علاقة التطور والبيئة، فقد ازداد التناقض على مناطق الساحل ومرافقه كنتيجة حتمية للامتداد الصناعي، التجاري والترويحي، مما شكل ضغوطا على الأرضي الساحلية المحدودة اصلا، وكذلك على المياه الازمة لتشغيل المنشآت الصناعية والتجارية ومنظومة النقل (AEAP, 2000; Port Corporation Report, 2013; World Bank, 1993; 1996) ومن هنا كان لا بد من عمل مراجعات منتظمة لإجراءات

الخطيط الاقتصادي والاجتماعي للسعي إلى إدارة ساحلية متوازنة تحقق سلامة استخدام الموارد واستدامتها. لذلك لا بد أن يكون هناك تحدي مستمر لتقنيات المسح البيئي المستخدمة بحيث يكون تطبيقها سريع وفعال، فهناك العديد من الإرشادات والتوجيهات الدولية المعترف بها حول آليات مراقبة النظام البيئي البحري الحديثة (Richter and Abu Hilal, 2006; Hempel and Gladstone, 2000; Richter, 2002). وهنا يمكن استثمار البرنامج الوطني لمراقبة البيئة الساحلية كأداة لتحديد الضغوط المهددة للموارد الساحلية، واتخاذ الاجراءات اللازمة.

القضايا الناشئة، التوصيات والخيارات المتعلقة بإجراءات الإدارية الساحلية

قطع الأردن شوطاً طويلاً في مجال الرصد ومراقبة البيئة الساحلية ويعتبر من الدول المنقمة في هذا المجال بين الدول المطلة على البحر الأحمر. ولم تقتصر جهود الأردن في هذا المجال على البعد الوطني بل تتعدي ذلك إلى البعد الإقليمي، فقد زود الأردن الهيئة الإقليمية للمحافظة على بيئه البحر الأحمر وخليج عدن (PERSGA) بكمية وافرة من بيانات برنامج المراقبة الوطني منذ عام 2004 من أجل دعم إنشاء قاعدة معلومات بيئية إقليمية، كما ساهمت بفعالية في المشروع الإقليمي للهيئة المدعوم من مرفق البيئة العالمي "GEF" بواسطة البنك الدولي والمعنون: "الإدارية الاستراتيجية بنهج النظام البيئي في البحر الأحمر وخليج عدن، 2014-2018"، والذي يشار له بالاسم المختصر "SEM" والذي كان من أهم أهدافه رفع القدرات في الرصد البيئي ونشاركية المعلومات من خلال تفعيل إنشاء قاعدة معلومات إقليمية ، إلا أن مثل هذه القاعدة لم تتحقق بالشكل المرجو وتم استخدام جزء كبير من المخصصات المالية المحددة لهذا المكون من المشروع في أوجه أخرى، مما أضاع فرصة ثمينة على إقليم البحر الأحمر وخليج عدن أن يكون من بين منظومات البحار الإقليمية ومنظومات النظم البيئية الواسعة الرائدة في هذا المجال. كما انه وبالرغم من التقدم النسبي لعملية الرصد البيئي في خليج العقبة على المستويين الوطني والإقليمي، إلا إنها لا زالت بحاجة إلى المزيد من التحديث والتطوير، ومن الأمثلة على ذلك الحاجة إلى تطبيق تقنيات مراقبة جديدة وذات تغطية أوسع كالاستشعار عن بعد، من أجل تقييم إضافي للموقع الساحلية وربط أنشطة مراقبة البيئة الساحلية في الأردن مع برامج مراقبة عالمية لسهولة و موضوعية مقارنة النتائج عندما تتشابه طرق القياس. كما يتطلب الامر التوسيع النوعي في تحاليل نوعية مياه البحر والرسوبيات في الموقع التي تستخدم مياه التبريد تحديداً، لأن مياه التبريد يمكن أن تشكل أساساً قوياً لمشاريع تحلية مياه البحر، حيث يستفاد منها في خفض التكاليف والحد من الآثار البيئية المحتملة. وقد تم بالفعل تنفيذ أول مشروع ريادي

للتخلية من قبل شركة كاميرا في المنطقة الصناعية الجنوبيّة للساحل الأردني بالاستفادة من مياه التبريد. هناك حاجة أيضاً إلى استحداث خرائط الاعماق بغرض تمييز الموارد المختلفة، للمساهمة في تطوير وتحديث قوائم الانواع الحيوية، لا سيما الشعاب المرجانية والكائنات البحريّة المترابطة معها. وهناك ضرورة لإجراء دراسات استقصائية لأسماك المياه العميقة باعتبارها مصدراً مهماً للمصائد البحريّة وكمورد اقتصادي يمكن أن يخفف الضغط عن المصائد الساحلية التي تشكل الوجهة الوحيدة المتاحة حالياً للصيادين في العقبة. بالإضافة إلى الحاجة لاعتماد استراتيجية التخطيط المكاني البحري (Marine Spatial Planning) للمساعدة في استحداث مواقع غوص بديلة من خلال تطوير مواقع للشعاب المستحدثة. وقد كانت هناك أنشطة واضحة في هذا المجال حديثاً، فقد تم وبإشراف سلطة منطقة العقبة الاقتصادية الخاصة إغراق سفينة عام 1995 تبعها إغراق طائرة حديثاً (2018) ومن ثم إغراق بعض القطع البحريّة خلال عامي 2019 و 2020 فيما يعتبر متحفاً للقطع البحري تحت الماء. وتهدّف هذه المشاريع إلى التقليل ما أمكن من آثار الغواصين على الشعاب المرجانية الطبيعية في خليج العقبة (Al-Horani and Khalaf, 2013). كما ان استحداث خرائط التنوّع الحيوي سيعزّز من قدرة المسح الهيدروغرافي لتوفير بيانات حديثة لخدمة النقل البحري، وإيجاد مرفق لاستقبال مخلفات السفن ومعالجة مياه اتزان السفن. وبهذا السياق، لا بد من العمل على تقييم خطة التصدي لحوادث التلوث بالزيت المتوفرة حالياً والتي لا يكفي أن تكون للساحل الأردني فقط بل يجب أن تتعداه أقليماً نظراً لصيق خليج العقبة، وبالتالي قد لا ينحصر تهديد أي انسكاب نفطي على دولة بمفردها بل تكون له آثار عابرة للحدود. ومن أجل التكامل في هذا الإطار، لا بد من تعزيز اللوائح الوطنية والاتفاقيات الإقليمية والدولية والتنسيق بين السلطات المختلفة بهدف وضع خطة متكاملة لإدارة الموارد البحريّة تكون أوسع نطاقاً لضمان إفاذ دقيق للتشريعات، واللوائح ذات العلاقة.

أن إدارة البيئة الساحلية ومواردها المختلفة تحتاج إلى تعليم مجتمعي لتعزيز مفهوم التربية البيئية البحريّة، لدى جميع أصحاب المصلحة، وصنع القرار، فهي تعتبر ركناً أساسياً في الادارة المستدامة للسواحل (DOS, 2013; 2015). ولا بد أيضاً من انخراط الشباب في التدريب بهدف بناء القدرات والمهارات التقنية للإدارة الساحلية، بحيث يمكن الاستعانة بالمعاهد العلمية والبحثية ومركّز التدريب المتخصص، حيث تتشطّ كل من الجامعة الأردنية وجامعة اليرموك

التطبيقية في هذا المجال. ولدى محطة العلوم البحرية معرض ومتحف بسيط للحياة البحرية ولا شك أنه بحاجة للتطوير والتحديث بشكل يمكنه من توفير رسائل واضحة وموجهة للتعلم وإبراز أهمية ساحل العقبة البيئية، سواء للأغراض الحيوية أو التجارية أو الصناعية أو الترويحية.

إن الإدارة الساحلية المتكاملة تحتاج إلى مقاربة شاملة بين جميع مكوناتها والمتمثلة في الحفاظ على نظام بيئي سليم، وأخذ البعد الاجتماعي والاقتصادي بعين الاعتبار لضمان ربط الإنسان والمكان والزمان بالخطيب.

يبين الجدول التالي تحليل سوات (SWAT) لعدد من عناصر الإدارة الساحلية في العقبة، حيث يلخص نقاط القوة والضعف بالإضافة إلى الفرص المتاحة والتهديدات المحتملة.

جدول (1) تحليل سوات (SWAT) للإدارة الساحلية في منطقة العقبة الخاصة

نقاط الضعف	نقاط القوة
• تحويل العقبة إلى منطقة اقتصادية خاصة أدى إلى زيادة الضغوط على البنية التحتية مثل ازدياد اعداد وسائل النقل من وإلى المدينة، توسيع الموانئ على الساحل الاردني الضيق اصلا، بالإضافة إلى ازدياد سرعة نمو عدد السكان	• العقبة هي الميناء البحري الوحيد في الأردن وتحتل موقعاً استراتيجياً لقربها من تقاطع طرق مابين أوروبا وأسيا وأفريقيا، ولها خصائص جغرافية مميزة وتوفر سلطة منطقة العقبة الاقتصادية الخاصة فرصاً استثمارية عالمية في بيئة أعمال رفيعة المستوى، تتراوح من الخدمات السياحية إلى الخدمات الترويحية ومن الصناعات التحويلية والصناعات الخفيفة.
• الأنشطة المرتبطة بهذا القرار تضع ضغطاً كبيراً على الموارد الطبيعية والنظام البيئي	• قامت سلطة منطقة العقبة الاقتصادية الخاصة بإنشاء "نافذة" للاستثمار، تعمل نقطة اتصال مجمعة لتلبية احتياجات المستثمرين. كما أنها توفر حواجز لهم لتوسيع استثماراتهم في منطقة العقبة.
• زيادة حركة النقل البحري وتهديد الانسكابات النفطية المحتملة في خليج العقبة	• تعد العقبة وجهة سياحية رئيسية للسياح المحليين والأجانب وتنتمي الميزة الرئيسية
• لا يزال الحفاظ على الشعاب المرجانية وإعادة تأهيل ما تأثر منها في مدها	
• محدودية اعتماد معايير الجودة البيئية	
• غياب الاستثمارية وضعف التعاون الإقليمي في برامج الرصد والبحث لسد فجوات البيانات وتوفير الأساس العلمي للإدارة	

<p>الساحلية بشكل جيد</p> <ul style="list-style-type: none"> • محدودية اتباع استراتيجية واضحة للسياحة البيئية وبالتالي نقص البحث العلمية عن آثار السياحة على البيئة والموارد الساحلية. • يوجد العديد من الدراسات والخطط التي لا زالت بحاجة للاعتماد كي توضع قيد التنفيذ • لا يزال معدل البطالة مرتفع نسبيا نتيجة لعدة عوامل من بينها الزيادة المضطربة في أعداد الباحثين عن العمل كنتيجة للنمو السكاني والانتقال إلى العقبة من المناطق الأخرى في الأردن ومن خارج الأردن، ومحدودية التوافق بين مخرجات التعليم ومتطلبات سوق العمل، • محدودية مصادر الرزق من بعض المهن التقليدية في العقبة نتيجة للتغيرات المختلفة وكثافة الاستغلال الاقتصادي للمنطقة الساحلية. إحدى المجموعات التي تعاني بشكل خاص هم صيادو والعقبة الذين يشغلون حالياً موقعاً مركزياً في خطة تطوير مرسى الصيادين وتحديث تشريعات الصيد • لا زالت هناك حاجة لوضع إطار قانوني يحدد منطقة محمية بحرية على الساحل الأردني من خليج العقبة 	<p>للعقبة في إمكاناتها السياحية المتنوعة نظراً لموقعها الفريد على الحدود بين الصحراء والبحر وعلى تقاطع الطرق بين قارتين، وتضاريس مثيرة للاهتمام من الجبال والصحاري، وكذلك الشعاب المرجانية ذات الشهرة العالمية والشواطئ الرملية فهي واحدة من مواقع الغوص الرئيسية في العالم ذات المناخ الملائم على مدار العام، بالإضافة إلى التاريخ الغني والثقافة. كما يمكن ربط السياحة فيها مع وادي رم، البتراء والبحر الميت.</p> <ul style="list-style-type: none"> • لا زالت مساحات واسعة تحت الملكية العامة، مع وجود خطط الإدارة الحالية وكذلك الخرائط المؤقتة خاصة مع توفر خريطة العقبة الشمالية واتباع أسلوب التخطيط المكاني. • توفر الخبرات المدربة بشكل معقول والتي يمكن أن يعتمد عليها في تطوير منظومة الإدارة الساحلية المتكاملة • التطوير المستمر في اسس الإدارة والتنظيم فيما يتعلق بحماية البيئة البحرية والسائلية
<p>التحديات</p> <ul style="list-style-type: none"> • شح مصادر المياه العذبة والجاهة الماسة لإدراج تحلية مياه البحر ضمن خطط 	<p>الفرص</p> <ul style="list-style-type: none"> • سكان العقبة من الشباب ولديهم القدرة على أن يكونوا ناشطين اقتصادياً. وبالتالي

<p>• الإدراة الساحلية المتكاملة.</p> <p>• لا يزال المجتمع الأردني يتميز بوضعه اليافع حيث يوجد أكثر من ثلث المواطنين الأطفال دون سن الخامسة عشرة، لذا مع هذه النسبة العالية حالياً من الأطفال، ستنظر نسبة الإعالة مرتفعة أيضاً.</p> <p>• تشير الدلائل إلى أنه عندما يزداد عدد السكان كما هو الحال في العقبة، فإن هذا سيؤدي إلى زيادة في عدد الأسر، مما يؤدي إلى زيادة في مساحة الأراضي اللازمة للسكن.</p> <p>• زيادة الاعتماد على الواردات مما يهدد الأمن الاقتصادي، حيث يرتبط التوسيع في المدن الساحلية بالأنشطة التي تتطلب الكثير من المستوردات من أجل التنمية الصناعية والسياحية وغيرها من الأنشطة الاقتصادية. وبالتالي يمكن أن يكون هناك تبعات فورية على النظم الإيكولوجية البحرية مثل أخطار التلوث، والمخلفات البشرية والنفايات السائلة البلدية والصناعية، وانسكابات النفط، وتصريف مياه التبريد من الصناعات التحويلية ومحطات الطاقة الحرارية.</p> <p>• رغم التحسن النسبي فلا زالت هناك محدودية في المشاركة المجتمعية ومشاركة أصحاب المصلحة في إعداد وتنفيذ خطط الإدراة الساحلية</p> <p>• ضعف الاستقرار السياسي في المنطقة</p>	<p>توافر مجموعة غير مستغلة من العمالة التي تعتبر مورداً قيماً مليئاً بالطاقة ورغبة في العمل.</p> <p>• هناك العديد من الفرص الاقتصادية الناشئة في المحافظة وخاصة في قطاعات الخدمات والضيافة والصناعة. وفقاً لبيانات دائرة الإحصاءات العامة، بلغ عدد فرص العمل التي تم توفيرها عام 2013 في محافظة العقبة 1176 وهو ما يمثل 2.4% من إجمالي الوظائف التي تم إنشاؤها في سوق العمل الأردني.</p> <p>• من شأن توفر استراتيجية تسويق العقبة، وكذلك خطة تطوير منتجات العقبة للسياحة أن تساعده في تعزيز صناعة السياحة لأنها تعتبر قوة رئيسية في اقتصاد العقبة المتنامي.</p> <p>• التوسيع برسم خرائط المواصل استناداً إلى خطة العقبة الشاملة وكذلك خطة العمل البيئية في العقبة لتنبع جودة المواصل في المناطق الساحلية المختلفة والتي لم يتم مسحها من قبل. كما يمكن أن تتبناً أيضاً بموقع المواصل ذات الجودة الأقل، وبالتالي ستتوفر معلومات يمكنها أن تقيد باتخاذ القرارات المتعلقة بكيفية تصميم أي موقع وسوية إدارته.</p> <p>• كما سيساعد ذلك أيضاً في التخطيط المكاني البحري وإدارة المناطق البحرية</p>
---	---

<p>وتنامي الصراعات الإقليمية تؤثر على صناعة السياحة. ويلاحظ ذلك من خلال تذبذب عدد السياح إلى العقبة في السنوات الماضية.</p>	<p>التي يمكن أن تستفيد من تعريف المناطق البحرية ذات الأهمية والصلة بالبيئة (مثل تعريف أهم المناطق البيئية، وبالتالي حمايتها من أنشطة التطوير القائمة كالتجريف أو الإلقاء أو الاستخراج).</p> <ul style="list-style-type: none">• توفر البحث والرصد مع تقييم الرصد الوطني لخليج العقبة• توفر التشريعات والتنسيق والمقدرة على التنفيذ والتعليم ونشر الوعي• هناك فرص وطنية ودولية للتعاون في وضع تدابير مناسبة لمنع أو تخفيف آثار التغير المناخي والظواهر البيئية المرتبطة به.
---	--

شكر وتقدير: وافر التقدير والعرفان لكل من ساهم بتوفير المعلومات القيمة والمقدمة وبخاصة سلطة العقبة الاقتصادية، شركة تطوير العقبة وشركة الموانئ وغيرهم من اصحاب المصلحة في العقبة. تم تحضير هذه الورقة وآخر اجها بالشكل الحالي خلال اجازة التفرغ العلمي للمؤلف الاول، والممنوحة له من الجامعة الاردنية للعام الدراسي 2019/2020.

Reference:

Al-Horani, F. (2013). Sustainable resources of corals for the restoration of damaged coral reefs in the Gulf of Aqaba, Red Sea. *Life Science Journal* 10(3), 352-360.

Al-Horani, F. & Khalaf, M. (2013). Developing Artificial Reefs for the mitigation of Man-Made Coral Reef Damages in the Gulf of Aqaba- Red Sea; Coral recruitment after 3.5 years of deployment. *Mar. Biol. Res.* 9; 749-757.

Al-Horani, F. A., Al-Rousan, S. A., Al-Zibdah, M., & Khalaf, M. (2006). Status of coral reefs in the Jordanian coast of the Gulf of Aqaba- Red Sea. *Zool. Mid. East* 38: 9-22

Al-Majali, S. (2019). Distribution and assemblages of the intertidal fauna along the coast of Aqaba Gulf. Ms thesis, Faculty of Marine Science, Jordan University, Aqaba. Pp 86

Al-Zibdah, M., Jawasrah R & Badran M. (2018). Socioeconomic and cultural ethics of fishermen community in Aqaba, Red Sea (in Arabic), 11(1),

Al-Zibdah, M. (2015). Giant Clam, *Tridacna* spp: A Potential Candidate for Green Aquaculture of High Revenue in Jordan's Gulf of Aqaba. *Jordan Journal of Agricultural Sciences*, 11(3), 677-690.

Al-Zibdah, M. (2014). Growth profile of gilthead bream reared in mega flow re-circulating aquaculture system, *Journal of Agricultural Science and Technology*, A 4: 307-314.

Al-Zibdah, M. (2013) .The Aqaba Marine Protected Area - Integration of Marine Science and Resource Management in the Gulf of Aqaba- Red Sea. *International Journal of Marine Science*, 3(44), 361-367

Al-Zibdah M., Damhoureyeh S. & Badran M., (2008). Temporal variations in coral reef health at a coastal industrial site on Gulf of Aqaba, Red Sea, *Oceanologia*, 49 (8), 1-14

Al-Zibdah M. & Badran M. (2004). Wise management of coral reefs, a key tool for promotion of tourism in Aqaba, Jordan. *Mu'tah Lel-Buhuth wa-Dirasat*, 18 (4), 147-169.

Al-Zibdah, M., Khalaf, M. & Odat. N. (2007). The fishery status in Jordan's Gulf of Aqaba, Red Sea. *Dirasat, pure sciences*, 33(1), 127-141

Badran, M. & Al-Zibdah, M. (2006). Environmentally friendly mariculture in coral reef areas, Jordan, Gulf of Aqaba, Red Se, Mu'tah lilbubuth wad-Dirasat 21(1), 37-47

Badran M. & Zibdah M. (2005). Quality Standard Codes of Reference of Jordanian Coastal Waters of the Gulf of Aqaba, Red Sea, Chemistry and Ecology, 21(5), 337.

Badran M., Rasheed M., Manasrah R., & Al Najjar T. (2005). Nutrient flux fuels summer primary productivity in the oligotrophic waters of the Gulf of Aqaba, Red Sea, *Oceanologia*. 47(1): 47-60

Badran M. (2001). Dissolved Oxygen, Chlorophyll a and Nutrients: Seasonal Cycles in Waters of the Gulf of Aqaba, Red Sea, *Aquat Ecosyst Health Manage*, 4:139-150

Badran M. & Foster P. (1998). Environmental quality of the Jordanian coastal waters of the Gulf of Aqaba, Red Sea, *Aquat Ecosyst Health Manage*, 1: 83-97

Crosby M., Laffoley D., Mondor C., O'Sullivan G., & Geenen K., (1997). Proceedings of the Second International Symposium and Workshop on Marine and Coastal Protected Areas: Integrating Science and Management, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD, USA. PP. 247

Department of Statistics, (DOS), (2013). Employment and unemployment survey/fourth round. Department of statistics, Jordan.

..... DOS (2015). Statistical Yearbook. Department of Statistics, The Hashemite kingdom of Jordan. Amman, Jordan, Pp 93.

..... DOS (2006). Statistical Yearbook. Department of Statistics, The Hashemite kingdom of Jordan. Amman, Jordan, Pp 110.

Gulf of Aqaba Environmental Action Plans (AEAP) #21060-IS and 21059-EGT, (2000). ASEZA, Aqaba.

Gladstone, W. (2000). Ecological and social basis for management of a Red Sea marine protected area. *Ocean & Coastal Management* 43: 1015-1032.

Hempel, G. & Richter , C. (2002). The Red Sea Program: sailing a nutshell of hope in the Red Sea waters. *Mar. Ecol. Prog. Ser.* 239:231-232.

Hulings, N. (1989). A review of marine science research in the Gulf of Aqaba. The University of Jordan Press. Amman, Jordan.

Jibrin, A. (1986). Productivity and distributional patterns of selected red, brown and green algal species in the Gulf of Aqaba. Master Thesis, University of Jordan,

Khalaf, M. & Kochzius, M. (2002). Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea. *Helgol. Mar. Res.* 55: 252-284.

Khalaf, M. & Disi, A. (1997). Fishes of the Gulf of Aqaba. *Marine Science Station. No.8.* 252

Manasrah, R. (2015). Water Exchange Calculations Using the Salt Conservation Law in Ayla Lagoons in the Northern Gulf of Aqaba, Red Sea. *Natural Science*, 7, 197-209.

Manasrah, R. Al- Zibdah, M. Al-Ougaily, F. Yusuf, N. & Al-Najjar, T. (2007). Seasonal changes of water properties and current in the northernmost Gulf of Aqaba, Red Sea. *Ocean Science Journal*, 42 (2), 26-37.

Manasrah, R. Badran, M. Lass, H. & Fennel, W. (2004). Circulation and winter deep-water formation in the northern Red Sea. *Oceanologia* 46(1), 5-23.

State of Coastal Environment Report-SOCER, (2017). UNDP technical series, Aqaba, .

Ministry of Agriculture, (1994). Fishery annual report, Amman, Jordan, Pp: 75

Ministry of Agriculture, (1996). Fishery annual report, Amman, Jordan, Pp: 64 .

Munn, R. Whyte A. & Timmerman P. (1999). Emerging Environmental Issues for the 21st Century: a Study for GEO-2000. International Council of Scientific Unions and UNEP. <http://www.unep.org/geo2000/> (accessed February 2010).

National Monitoring Program-NMP, (2018). Marine Science Station and Aqaba Special Zone Authority, annual report, Aqaba.

Rasheed M., Manasrah R., Al-Trabeen K. & Dixon L. (2018). Impact of artificial lagoons on seawater quality: evidence from 7 years of physicochemical seawater monitoring. *Environmental Monitoring and Assessment*, 190 (4), DOI: 10.1007/s10661-018-6620-8.

Rasheed, M., Badran, M., Richter, C., & Huettel, M. (2002). Effect of the reef framework and bottom sediment on nutrient enrichment in coral reef of the Gulf of Aqaba, Red Sea. *Marine Ecology Progress Series*, 239: 277-285.

Richter, C. & Abu-Hilal, A. (2006). Seas of the Arabian Region. Chapter 34. *In: The Sea: The Global Coastal Ocean, Interdisciplinary Regional studies and Synthesis. Volume 14 Part B.* Edited by Allan R. Robinson and Kenneth H. Brink. Pp 1373-1412. Harvard Univ. Press, Cambridge, MA.

Sandlers, D. Adly, M. Al-Khoshman, P. Warburg & Bernstein., T. (1994). Protecting the Gulf of Aqaba: A regional environmental challenge. Environmental Law Institute, Washington, DC.

Port Corporation Report, (2013). Statistics of the year, Aqaba, Jordan, 66pp

PERSGA/GEF (Global Environment Facility). (2003). Strategic Action Programme for the Red Sea and Gulf of Aden, country reports. PERSGA, Jeddah and the World Bank, Washington..

PERSGA. (2006). State of the Marine Environment, Report for the Red Sea and Gulf of Aden. PERSGA, Jeddah .

Sheppard, C., Price, A. & Roberts, C. (1994). Marine Ecology of the Arabian Region: patterns and processes in extreme tropical environments. Academic Press, London.

World Bank. (1993). Gulf of Aqaba Environmental Action Plan. Jordan. Report No. 12244 JO.

World Bank. (1996). Gulf of Aqaba Environmental Action Plan. Jordan. Report No. 15677 JO.

Cell With Aluminum-Alloyed Emitter, IEEE Electron Device Letters, 32 (3): 345-347.

Yalamanchili, S., Lewis, N. & Atwater, H. (2018). Role of Doping Dependent Radiative and Non-radiative Recombination in Determining the Limiting Efficiencies of Silicon Solar Cells. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, pp. 3223-3226.

Zhao, Y., Mazzarella, L., Procel, P., Han, C., Yang, G., Weeber, A., Zeman, M. & Isabella, O. (2020). Doped hydrogenated nanocrystalline silicon oxide layers for high-efficiency c-Si heterojunction solar cells, Progress in Photovoltaics: Research and Applications: 1-11.

Zhuang, Y. , Zhong, S., Liang, X., Kang, H., Li, Z. & Shen, W. (2019). Application of SiO_2 passivation technique in mass production of silicon solar cells, Solar Energy Materials and Solar Cells, 193: 379-386.

Procel, P., Löper, P., Crupi, F., Ballif, C. & Ingenito, A. (2019). Numerical simulations of hole carrier selective contacts in p-type c-Si solar cells, *Solar Energy Materials and Solar Cells*, 200: 109937.

Sadullah, M., Kaur, J., Basu, R. & Sharma, A. (2020). Analysis of thin-film direct band-gap SiGeSn alloy based heterostructure solar cell featuring SiGe absorber layer, *Optik*, 202: 163715.

Sheng, J., Wang, W., Ye, Q., Ding, J., Yuan, N. & Zhang, C. (2019). MACE Texture Optimization for Mass Production of High-Efficiency Multi-Crystalline Cell and Module, *IEEE Journal of Photovoltaics*, 9 (3): 918-925.

Shiraki, Y. & Sakai, A. (2005). Fabrication technology of SiGe hetero-structures and their properties, *Surface Science Reports*, 59 (7): 153-207.

Silvaco International. (2018). ATLAS User's Manual. Available at: www.silvaco.com.

Singh, A., Tiwari, J., Yadav, A. & Jha, R. (2014). Analysis of Si/SiGe Heterostructure Solar Cell, *Journal of Energy*, 2014: 7.

Sun, X., Xu, X., Tu, J., Yan, P., Song, G., Zhang, L., & Zhang, W. (2019). Research Status of Antireflection Film Based on TiO₂, *IOP Conference Series: Materials Science and Engineering*, 490: 022074.

Wang, X., Yang, Z., Gao, P., Yang, X., Zhou, S., Wang, D., Liao, M., Liu, P., Liu, Z., Wu, S., Ye, J. & Yu, T. (2017). Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays. *Optics Express*, 25:10464-10472.

Woehl, R., Krause, J., Granek, F. & Biro, D. (2011). 19.7% Efficient All-Screen-Printed Back-Contact Back-Junction Silicon Solar

Guo, X., Rong, Z., Wang, L. , Liu, S., Liu, Z., Luo, K., Chen, B., Qin, D., Ma, Y., Wu, H., & Hou, L. (2020). Surface passivation via acid vapor etching enables efficient and stable solution-processed CdTe nanocrystal solar cells, *Sustainable Energy & Fuels*, 4 (1): 399-406.

Hussain, S., Mehmood, H., Khizar, M. & Turan, R. (2018). Design and analysis of an ultra-thin crystalline silicon heterostructure solar cell featuring SiGe absorber layer, *IET Circuits, Devices & Systems*, 12 (4): 309-314.

International Energy Agency. (2016). Energy efficiency outlook, *World Energy Outlook*: 283-312.

Kadri, E., Krichen, M. & Arab, A. (2016). Analytical method for the analysis of thin SiGe/Si solar cells with front surface field, *Optical and Quantum Electronics*, 48 (5): 305.

Liao, M., Chen, C., Chang, L. & Yang, C. (2012) . A novel stress design for the type-II hetero-junction solar cell with superior performance, *Journal of Applied Physics*, 111 (6): 063109.

Liou, J. & Wong, W. (1992). Comparison and optimization of the performance of Si and GaAs solar cells, *Solar Energy Materials and Solar Cells*, 28 (1): 9-28.

Park, S., Park, H., Kang, Y., Lee, H.-S. & Kim, D. (2016). Analysis of aluminum back surface field at different wafer specifications in crystalline silicon solar cells, *Current Applied Physics*, 16 (9): 1062-1068.

Priyadarshini, B. & Das, M. (2015). Ge-content dependent efficiency of $Si_{1-x}Ge_x$ nanorod solar cell with pyramid structure. 2015 International Conference on Microwave and Photonics (ICMAP).Vol. IEEE, Dhanbad,pp. 1-2.

Chen, K., Zha, J. , Hu, F., Ye, X., Zou, S., Vähänissi, V., Pearce, J. M., Savin, H.,& Su, X. (2019). MACE nano-texture process applicable for both single- and multi-crystalline diamond-wire sawn Si solar cells, *Solar Energy Materials and Solar Cells*, 191: 1-8.

Chhajed, S., Schubert, M., Kim, J. & Schubert, E. (2008). Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics, *Applied Physics Letters*, 93: 251108.

Chiu, J.-S., Zhao, Y.-M., Zhang, S. & Wuu, D.-S. (2020). The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells, *Solar Energy*, 196: 462-467.

Choudhary, S., Ranjan, R. & Das, M. (2013). Performance analysis of Si/SiGe double junction solar cell. In: Das S, Kumar J and Das MK.(Eds.), *Proceedings of International Conference on Microwave and Photonics (ICMAP)*.Vol.1. IEEE, Dhanbad, India, pp.1-5.

Das, M. & Choudhary, S. (2012). Ge-content dependent efficiency of Si/SiGe heterojunction solar cell. *Proceedings of Photonics Global Conference (PGC)*.Vol.1. IEEE, Singapore, pp.1-4.

Ferdiansjah, Faridah, & Tirtakusuma Mularso, K. (2018). Analysis of Back Surface Field (BSF) Performance in P-Type And N-Type Monocrystalline Silicon Wafer. *Proceedings of International Energy Conference*.Vol.43. E3S Web Conf, ASTECHNOVA, pp.4.

Green, M., Hishikawa, Y., Dunlop, E., Levi, D., Hohl- Ebinger, J. & Ho- Baillie, A. (2018). Solar cell efficiency tables (version 52), *Progress in Photovoltaics: Research and Applications*, 26 (7): 427-436.

References:

Abdul Hadi, S., Hashemi, P., DiLello, N., Polyzoeva, E., Nayfeh, A. & Hoyt, J. (2014). Thin-film $\text{Si}_{1-x} \text{Ge}_x$ HIT solar cells, *Solar Energy*, 103: 154-159.

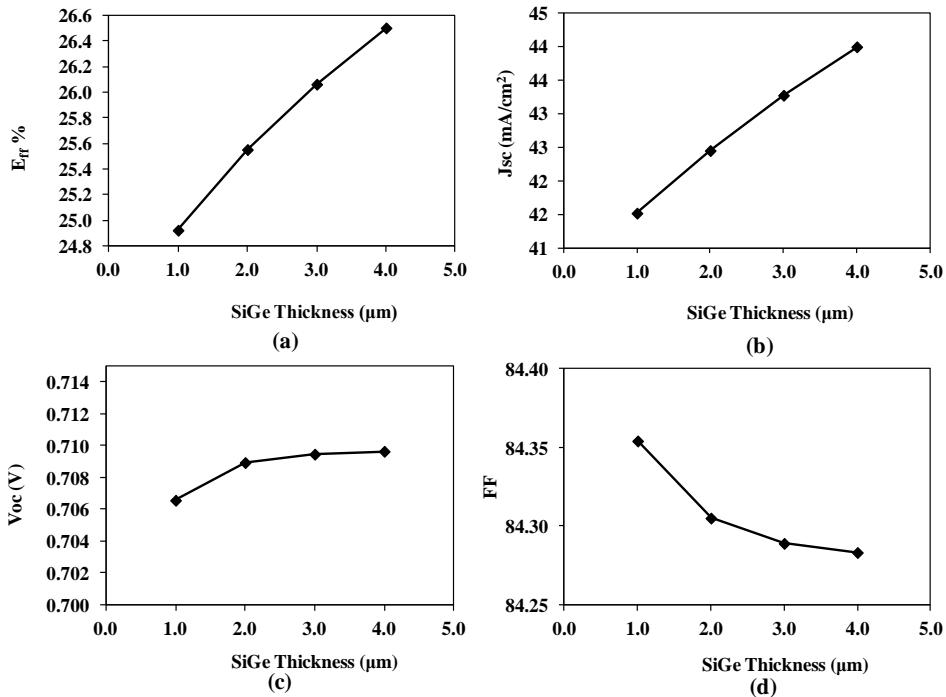
Alhashemi, M., Albadwawi, O. & Almansouri, I. (2020). Optical Simulations and Analysis for Single and Double Layer Antireflection Coatings on Si Solar Cells. In: Al-Masri AN and Al-Assaf Y.(Eds.), *Sustainable Development and Social Responsibility*.Vol. 2. Springer International Publishing, Cham, pp. 149-155.

Amalathas, P., Amalraj, A. & Maan, M. (2019). Nanostructures for Light Trapping in Thin Film Solar Cells. *Micromachines*, 10: 619.

Boo, H., Lee, J-H., Kang, M. G., Lee, K., Kim, S., Hwang, H. Hwang, W. , Kang, H., Park, S., Tark, S. & Kim, D. (2012). Effect of High-Temperature Annealing on Ion-Implanted Silicon Solar Cells. *International Journal of Photoenergy*, 1-6.

Bruce, R., Sunal, P., Rivero-Baleine, C. & Mayer, T. (2019). High-performance surface-engineered gradient refractive index (GRIN) coatings. In: *Sensing SDC*.(Eds.), *Proceedings of Advanced Optics for Imaging Applications: UV through LWIR IV*.Vol. 10998. SPIE., Baltimore, Maryland, United States, pp. 109980B.

Chen, C.-H., Juan, P.-C., Liao, M.-H., Tsai, J.-L., & Hwang, H.-L.(2011). The effect of surface treatment on omni-directional efficiency of the silicon solar cells with micro-spherical texture/ITO stacks, *Solar Energy Materials and Solar Cells*, 95 (8): 2545-2548.


4. Conclusions

In this paper, the electrical performance of pyramid-based SiGe solar cell is investigated. The maximum obtained electrical conversion efficiency was 26.6%. The computed dependence of cell's electrical performance on critical design variables in the device structure is closely examined. The value of base doping that achieves the maximum cell efficiency was found to be $8.34 \times 10^{17} \text{ cm}^{-3}$. Furthermore, it was found that adopting higher surface concentration and shallower junctions of the emitter region would enhance the electrical conversion efficiency. Moreover, the level of front texturing (i.e., number of pyramids and its height) was a critical parameter that possibly improves the cell's performance. In addition, the impact of the purposely-introduced SiGe region on the solar cell performance is addressed and discussed in detail. For appropriate Ge percentage and SiGe layer thickness, the SiGe based cell's electrical conversion efficiency can be significantly improved. Therefore, the SiGe based solar cell will achieve excellent electrical efficiency and can be taken into account for high-performance solar cell applications.

solar cells with pyramid structure. The simulated efficiency was 5.66% for Ge content = 50%. Sadullah et al., (2020) has recently proposed a $Si_{1-x-y}Ge_xSn_y-Si_{1-x}Ge_x$ based solar cell, the reported simulated efficiency was 19.9%. Moreover, Future experimental investigation to verify the findings obtained must be carried out. In terms of their electrical performance, it is expected that the manufactured cell would still be higher than the tabled in Table (2) as the efficiency is significantly improved in comparison with the experimental research undertaken for SiGe based cell in (Liao et al . , 2012) and for Si based cell in (Green et al., 2018). The cost of manufacturing is expected to be lower, as the complexity of the proposed structure is much less than that of SiGe based cell in (Liao et al., 2012).

Table (2) Performance comparisons of reported solar cells based on SiGe and Si structures.

Reference	Eff%	V _{oc} (mV)	J _{sc} (mA/cm ²)	FF	Solar Cell Structure
(Green et al., 2018)	12.2	0.55	28.72	75	Si (microcrystalline)
(Kadri et al., 2016)	18.4	0.613	36.45	82.35	n ⁺ Si/ n-Si _{1-x} Ge _x /p Si double hetero-junction
(Hussain et al., 2018)	16.8	0.519	40.8	79	Si/ Si _{1-x} Ge _x
(Liao et al., 2012)	18.40	0.715	33	78	SiGe QW with surface textured
(Priyadarshini and Das, 2015)	5.6	0.417	16.5	-	Si _{1-x} Ge _x nanorod Solar Cell with Pyramid Structure
(Sadullah et al., 2020)	19.9	0.585	41.18	83	n ⁺ Si _{1-xy} Ge _x Sn _y /p- Si _{1-x} Ge _x /p- Si _{1-x-y} Ge _x Sn _y /p+ Si _{1-x-y} Ge _x Sn _y based solar cell.
This Work	26.5	0.71	44	84.3	n ⁺ Si/p-Si/ p-Si _{1-x} Ge _x /p Si structure

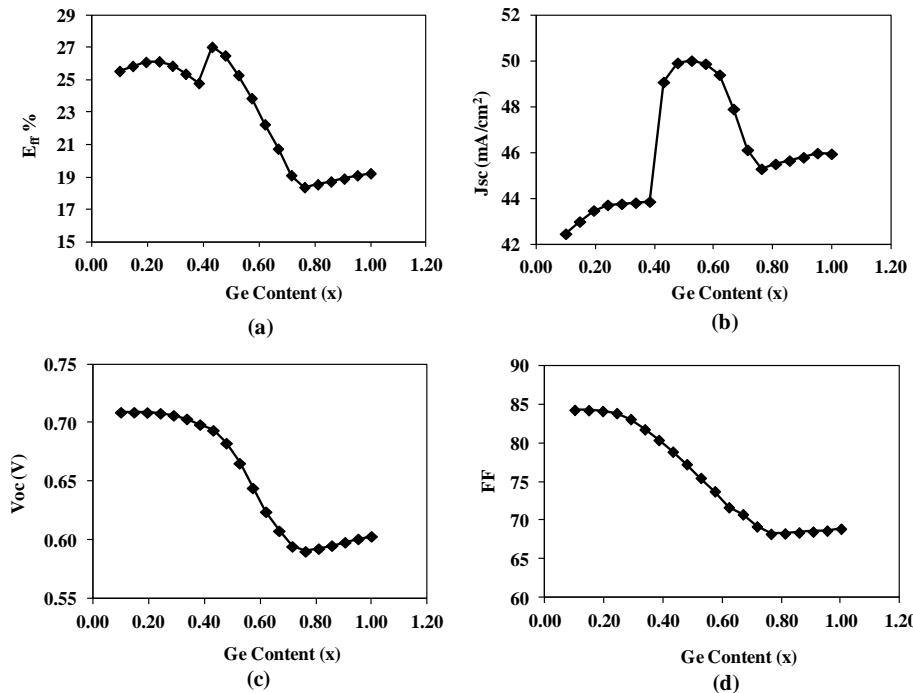

Figure (11) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus SiGe layer thickness for the SiGe based solar cell.

Table (2) compares the results of recently reported solar cells based on SiGe material in terms of their overall electrical performance. It can be seen that the proposed structure achieves higher conversion efficiency when compared with the silicon based solar cell and the recently reported data. The increase in simulated efficiency of SiGe based solar cell when compared to its Si counterpart is primarily due to the improved light absorption as a result of introducing the SiGe material in the device structure. In addition to, the enhanced electrical mobilities of both electron and holes in SiGe layer. An efficiency of 18.4% was numerically obtained when utilizing $n^+Si/n-Si_{1-x}Ge_x/p$ Si double hetero-junction structure (Kadri et al., 2016). Furthermore, surface textured SiGe-based solar cell has been proposed in (Liao et al., 2012) where the experimentally reported efficiency was 18.4%. Finally, Priyadarshini and Das, (2015) had proposed nanorod

increased dark current resulting from the induced reduction in energy band gap when increasing x in the SiGe material. For Ge contents ($x= 0.4 - 0.53$), the dark current starts to increase further due to the carrier confinement effect which ultimately dominates over the effect of the improved absorption in SiGe layer. Finally, for x above 0.76, the open voltage becomes almost constant since the increased J_{Light} is canceled out by the increased J_{dark} due to the carrier confinement effect and the induced reduction in the band gap of the SiGe material. Figure (10) (d) demonstrates the influence of Ge content in the SiGe layer on the FF of the solar cell. The FF follows the behavior of V_{oc} since the E_{ff} and J_{sc} of the cell have similar trends when increasing the Ge content in the SiGe material as shown in Figures (10) (c) and (d).

Figure (11) (a) shows the effect of SiGe layer thickness on the cell's efficiency, and it can be shown that increasing SiGe layer thickness improves the cell's efficiency because of the substantial increase in the short circuit current as shown in Figure (11) (b). It should be noticed that the photogenerated current in SiGe layer increases as the thickness of SiGe layer increases giving enhanced cell performance. Furthermore, it can be noted that the ratio of $J_{\text{light}}/J_{\text{dark}}$ for a thicker SiGe layer increases marginally due to the counterbalance effect between J_{light} , which increases as SiGe thickness increases, and the increase in recombination current due to the increased width of the hole blocking layer thus increases dark current. Accordingly, the open voltage V_{oc} is slightly changed when increasing the SiGe layer thickness as shown in Figure (11) (c).

Similarly, as shown in Figure (11) (d), a small fluctuation in FF within the range 84.3 of and 84.35 is also noted. This can be attributed to the increase in J_{sc} , which is undermined by the decrease in the V_{oc} as the thickness of the SiGe layer increases.

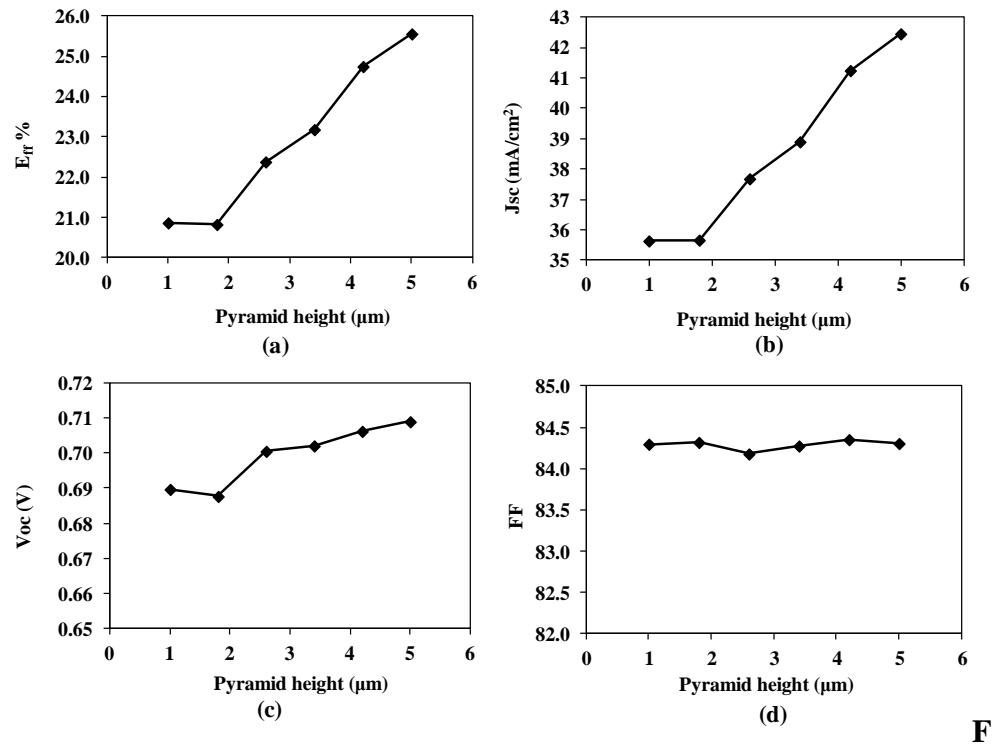
Figure (10) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus Ge content for the SiGe based solar cell.

Figure (10) (b) shows that the J_{sc} increases as the Ge content increases to the value ($x = 0.4$) due to the improved absorption of the light at longer wavelengths. However, for Ge contents ($x = 0.4$ to 0.53), the photogenerated carriers start to increase until it reaches a maximum value of 50 mA/cm^2 for $x = 0.53$ due to the increased light absorption. For Ge contents ($x = 0.53$ to 0.76), J_{sc} starts to be confined at the p-SiGe/p-Si hetero-interface due to the induced offset in the valance band as shown in Figure (2). Consequently, the recombination current is increased; and hence J_{sc} is reduced. After that, J_{sc} increases again for ($x > 0.76$) due to the steep reduction in the energy band gap and the associated increase in the photocurrent current, this ultimately increases J_{sc} (Shiraki and Sakai, 2005). Figure (10) (c) shows the effect of varying the Ge content in the SiGe layer on V_{oc} of the solar cell. For Ge contents ($x = 0.1$ - 0.4), the ratio of J_{Light}/J_{dark} remains almost constant due to the combined effect of the increased photogenerated current due to the improved absorbance together with the

V_{oc} of the cell, however, the reflectivity of the cell is decreased for pyramid heights greater than $2\mu\text{m}$ and the photogenerated current begins to overcome the effect of surface recombination and hence enhances V_{oc} of the cell. A slight fluctuation in FF within the range of 84.2 and 84.4 is also noticed as shown in Figure (9) (d).

Figures (10) (a), (b), (c) and (d) demonstrate the influence of Ge content (x) in the $\text{Si}_{1-x}\text{Ge}_x$ layer on the device electrical parameters. The value of (x) that can achieve the maximum J_{sc} and E_{ff} is almost equal to 0.53. This is mainly due to the improved SiGe absorption nature which increases the cell photogeneration current as a result of the induced reduction of the SiGe band gap. Figure (10) (b) illustrates J_{sc} dependency on Ge content (x) in the SiGe material, it can be noted that the short circuit current increases dramatically when reaching ($x=0.53$). This is actually due to small band gap of SiGe material which enhances light absorption especially for the long wavelengths of sun spectrum as given in the following equation (Singh et al., 2014).

$$\alpha_{\text{SiGe}} = (1-x) \cdot \alpha_{\text{Si}} + x \cdot \alpha_{\text{Ge}} \quad (12)$$


where α_{SiGe} , α_{Si} and α_{Ge} are the absorption coefficient of SiGe, Si and Ge materials, respectively.

On the other hand, as evident from equations (2) and (13), the increase in the Ge content in SiGe material increases the dark current density as a result of the induced reduction in SiGe band gap (Singh et al., 2014). Ultimately, this results in a dramatic decrease in cell open voltage V_{oc} and FF.

$$E_{g-\text{SiGe}} = (1-x) \cdot E_{g-\text{Si}} + x \cdot E_{g-\text{Ge}} \quad (13)$$

where $E_{g-\text{SiGe}}$, $E_{g-\text{Si}}$ and $E_{g-\text{Ge}}$ are the energy gap for pure Si and Ge materials.

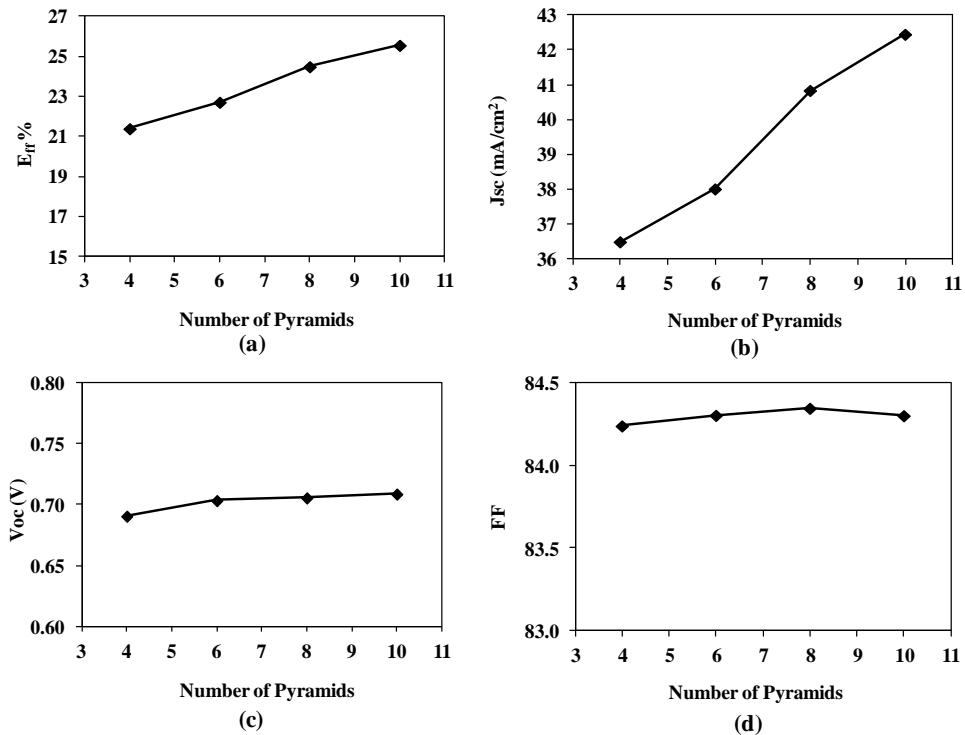
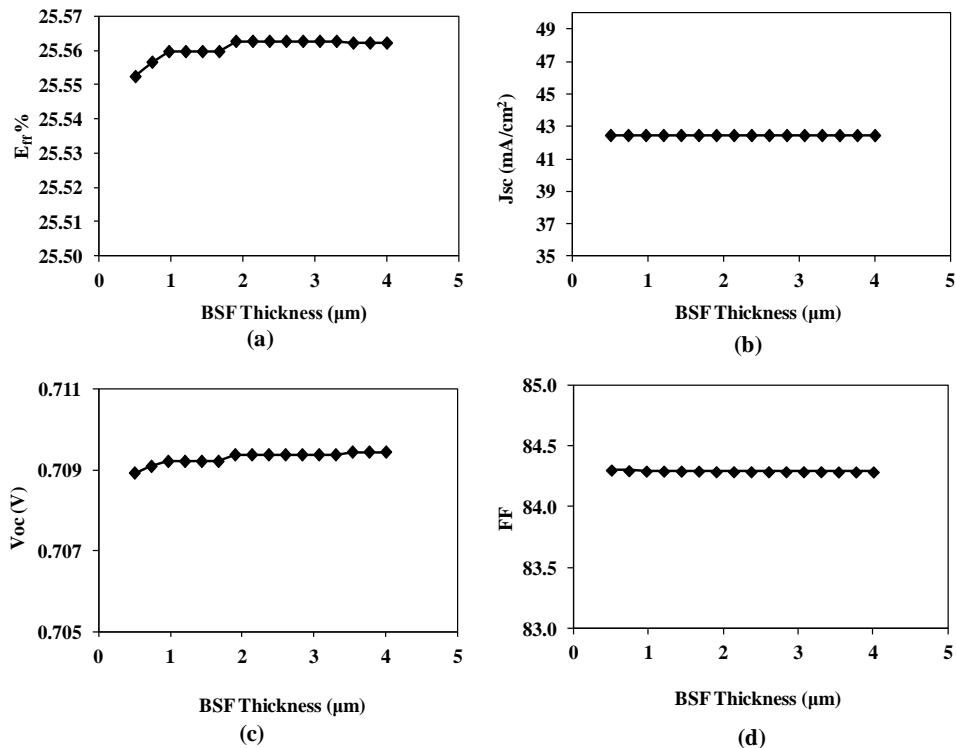

The pyramid size is yet another critical parameter in solar structures that affects the cell's optical and electrical performance. Figures (9) (a) and (b) show the influence of the height of pyramid variations on cell efficiency and J_{sc} , respectively.

figure (9) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus the pyramid height for the SiGe based solar cell.


It can be seen that the cell efficiency and the short current density remains almost constant for pyramid heights ranging from 1-2μm. However, for heights greater than 2μm, they start to increase as the height of pyramids in device structure increases. This is due to the resulting increase in number of photo generated carriers as a result of the improved light absorption in cell structure.

The open voltage , as shown in Figure (9) (c), decreases quite marginally for pyramid heights in the range of (1-2μm) due to the low level of light trapping and thus increased reflectivity compared to the level of surface recombination which affects the J_{sc}/J_{dark} ratio and marginally reduces

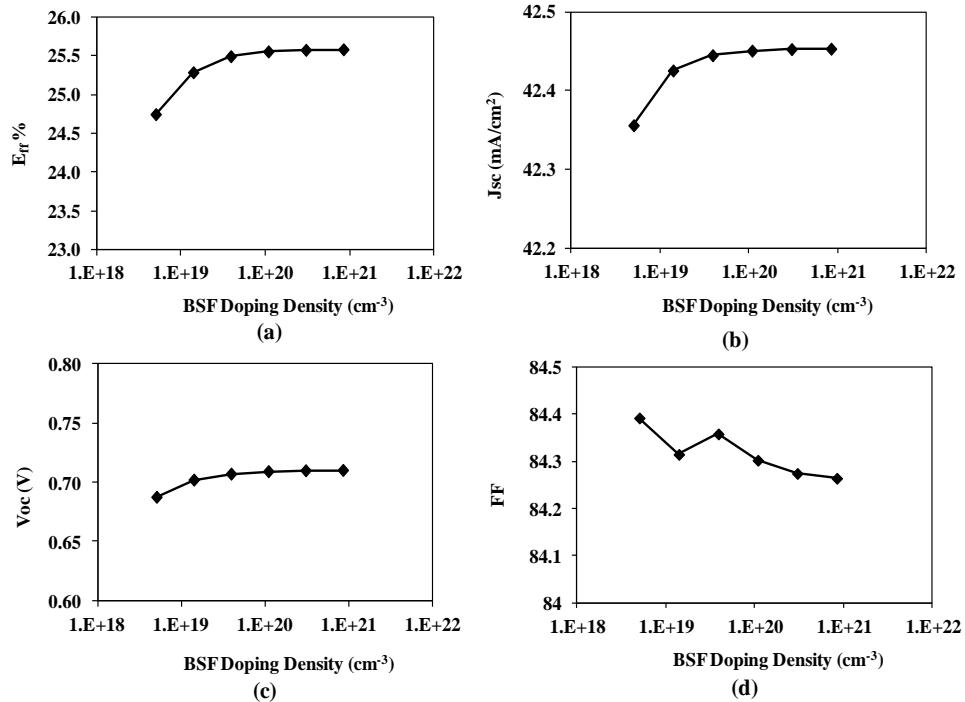

Figure (8) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus the number of pyramids for the SiGe based solar cell.

Figure (8) (c) also shows that open voltage varies slightly as the number of pyramids increases, this is mainly due the counter balance effect of the increase of photogenerated carriers and the induced increased dark current due to the increased recombination of carrier at front surface as the effective surface increases when increasing the number of pyramids in the device structure. Finally, as shown in Figure (8) (d), the fill factor increases slightly until the number of pyramids reaches eight pyramids and then it starts to decrease. This could be explained by the increased surface recombination rate at the front surface of the solar cell which counterbalances the increased photogenerated current due to the enhanced light absorption when increasing the level of texturing of the front surface of the device.

Figure (7) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus the thickness of BSF in the SiGe based device.

Solar cell texturing is well known as one of the best methods for reducing reflection loss and increasing the likelihood of light trapping and absorption (Amalathas et al., 2019) and (Wang et al., 2019). Pyramid surface textures (the number of pyramids (i.e., the amount of texturing) play a major role in reducing the reflectance of monocrystalline silicon surfaces has a detrimental impact on cell performance. Figures (8) (a), (b), (c), and (d) show the effect of increasing the number of pyramids in device structure on the E_{ff} , J_{sc} , V_{oc} , and FF respectively. As the number of pyramids increases, the solar cell current increases, hence the conversion efficiency due to the improved light absorption and reduced reflection due to increased texturing of the front surface of the silicon solar cell leading to trapping light more efficiently.

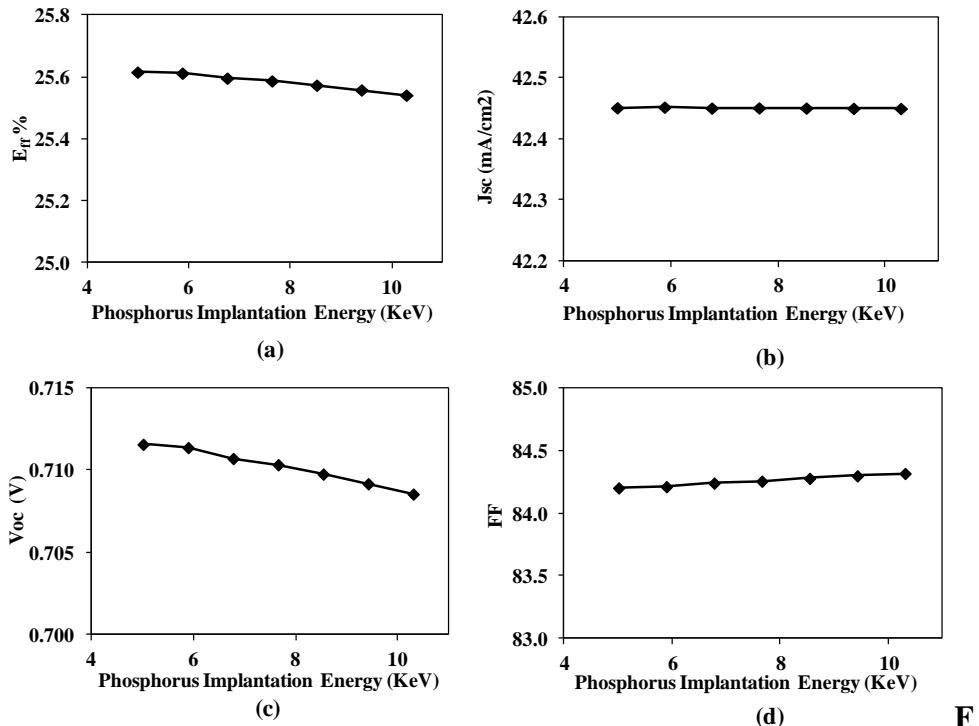
Figure (6) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus doping density of BSF in the SiGe based device.

Figures (7) (a), (b), (c), and (d) show the impact of BSF thickness on E_{ff} , J_{sc} , V_{oc} , and FF, respectively. It can be seen that the E_{ff} and V_{oc} slightly increase as the BSF width increases due to the resulting reduction dark current. This can be referred to induced slight reduction in BSFV when increasing the BSF width as evident in equation (10). The J_{sc} and FF remain almost unchanged when increasing BSF thickness as shown in Figures (7) (b) and (d), respectively.

Figure (6) (a) shows the impact of doping levels of BSF layer on E_{ff} . When the doping level increases until it reaches $3 \times 10^{19} \text{ cm}^{-3}$, the E_{ff} , starts to increase until it saturates at 25.6 %. This is mainly due to the improvement in J_{sc} and V_{oc} for higher doping levels as shown in Figures (6) (b) and (c), respectively. These improvements in J_{sc} and V_{oc} can be explained by the resulted reduction in back surface recombination velocity (BSRV) at BSF layer which is given for p/p+ structures as given by (Ferdiansjah et al., 2018).

$$\text{BSRV} = \frac{N_A}{N_A^+} \exp\left(\frac{q \cdot \Delta V_G^+}{kT}\right) \cdot \left(\frac{s_0 + \frac{D_e^+}{L_e^+} \tanh\left(\frac{W^+}{L_e^+}\right)}{1 + \frac{s_0 \cdot L_e^+}{D_e^+} \tanh\left(\frac{W^+}{L_e^+}\right)} \right) \quad (10)$$

where N_A and N_A^+ are the acceptor concentration in base and BSF regions respectively, ΔV_G^+ is band gap narrowing due to heavy dopants concentration in BSF layer, s_0 is surface recombination velocity without BSF layer, D_e^+/L_e^+ is the minority carrier diffusivity to diffusion length ratio in BSF region, and W^+ is BSF thickness.


The open voltage is as shown in Figure (6) (c), it can be seen that V_{oc} is limited by dark saturation current density J_{dark} , that is produced within base layer (I_{dark_b}) and within emitter layer (I_{dark_e}). For dark base current I_{dark_b} , its value will depend on bulk recombination and also BSF saturation current as given by (Ferdiansjah et al., 2018).

$$I_{dark_b} = I_{dark_bL} \cdot \left(\frac{I_{dark_r} + I_{dark_bL} \tanh\left(\frac{W_B}{L_B}\right)}{I_{dark_bL} + I_{dark_r} \tanh\left(\frac{W_B}{L_B}\right)} \right) \quad (11)$$

where I_{dark_bL} is ideal base saturation current, L_B is minority carrier diffusion length and base, W_B is base width and I_{dark_r} is saturated current at rear surface (Park et al., 2016).

Finally, a slight reduction in FF is noticed when the doping level increases in BSF layer as shown in Figure (6) (d).

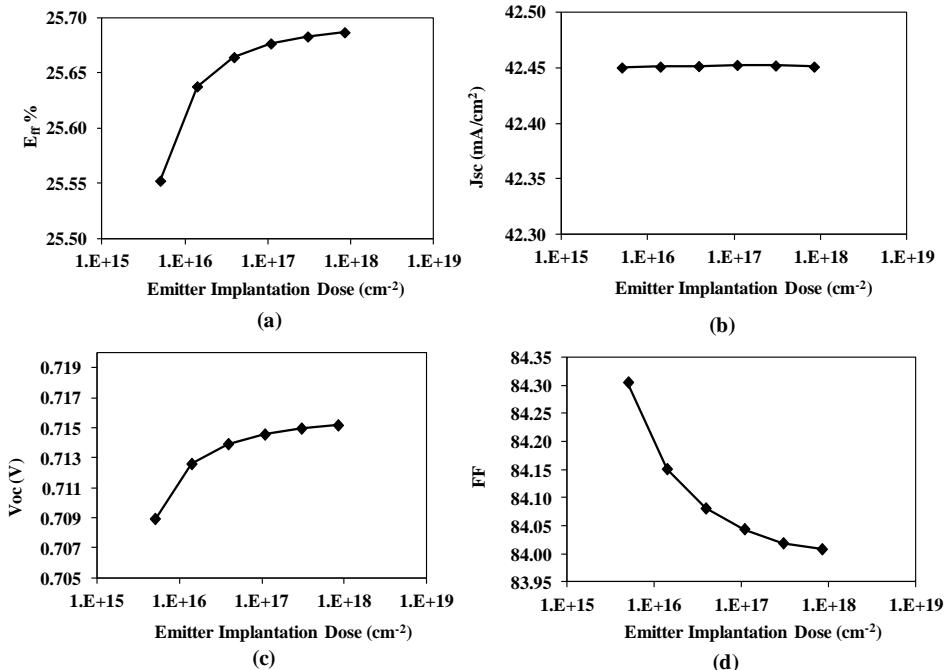

adopting lower implantation energy levels (i.e., higher surface concentration and shallower junctions) decreases the recombination of carriers in emitter region and therefore, enhances the device electrical conversion efficiency.

figure (5) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus phosphorus implantation energy for the SiGe based solar cell.

Other key parameter in recent solar cell designs is the back-surface field (BSF) which is a thin layer of highly p-doped material near the rear contact to reduce the minority carrier recombination in the base region. In this layer, an internal electric field is developed between p^+/p near the rear surface of the device structure as shown in Figure (2), which represents the cell's energy band diagram under equilibrium condition. This layer will assist in swapping away photogenerated minority carrier (electrons) from the rear surface, and therefore will reduce back surface recombination velocity and hence the dark current in the base region. Ultimately, the BSF layer will enhance carrier's collection probability that is produced from long range wavelength because this type of wavelength will tend to be absorbed at the rear side of the cell.

when increasing the doping dose in the emitter region as the increase in V_{oc} overcomes the changes in E_{eff} for higher doping doses as shown in Figure (4) (d).

Figure (4) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus phosphorus implantation dose for the SiGe based solar cell.

The other crucial parameter when forming the emitter region of the cell is the implantation energy of donor atoms. The conversion efficiency of the device marginally decreases as implantation energy rises since the depth of the emitter is quite shallow and the resultant emitter current is relatively low as shown in Figure (5)(a). This is consistent with Figure (5)(b), where the short circuit current density is still unchanged as photogenerated and dark current of the base region are much greater than the resulting increase in the dark current in the emitter region. Moreover, as shown in Figure (5) (c), there is also a small reduction in V_{oc} due to the resulting rise in J_{dark} when the implantation energy is elevated (i.e., deeper junction) due to the induced decrease in bulk life time of carriers during implantation (Boo et al., 2012). The device's fill factor is also decreased as the implantation energy increases, as shown in Figure (5) (d). Ultimately, it can be concluded that

hole concentrations, which ultimately increases the excess carrier concentration and, thus, the open circuit voltage. This is consistent with the results shown in Figure (3) (c). At higher base doping levels, the band gap narrowing effect starts to be a major player, which results in an increase in intrinsic carrier concentration n_i , and reduces the open circuit voltage. The open voltage dependence on the dopant density (N_A) in the base region is given as follows (Yalamanchili et al., 2018).

$$V_{OC} = \frac{kT}{q} \ln \left(\frac{(N_A + \Delta n) \cdot \Delta n}{n_i^2} \right) \quad (7)$$

$$V_{OC} = \frac{n k T}{q} \ln \left(\frac{I_{SC}}{I_{dark}} + 1 \right) \quad (8)$$

where kT/q is the thermal voltage, N_A is the doping concentration, Δn is the excess carrier concentration and n_i is the intrinsic carrier concentration.

Moreover, as shown in Figure (3) (d), the FF rises when increasing the doping levels. The FF of the solar cells depends on the behavior of the E_{ff} , J_{sc} and V_{oc} , which represent the ratio of the actual maximum obtainable power to the product of the open circuit voltage and short circuit current of a solar cell.

$$FF = \frac{E_{ff} \cdot P_s}{V_{oc} J_{sc}} \quad (9)$$

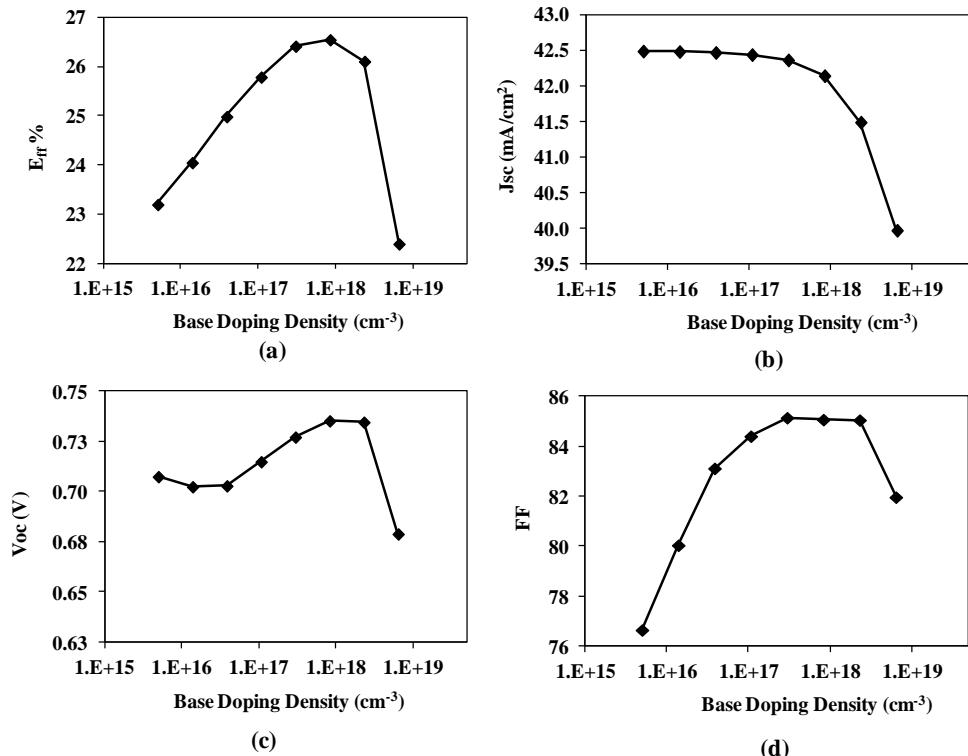
where P_s is the incident solar radiation power density.

Figure (4) (a) shows the impact of increasing the implantation dose of the emitter region on the device efficiency. It can be noticed that a slight increase of about 0.4% in cell efficiency as the implantation dose is increased. This can be referred to as the induced reduction in J_{dark} when increasing the implantation dose due to increased donor concentration in the emitter region (N_D) as given in equations (2) and (3). As shown in Figure (4) (b), the short circuit current is almost unchanged when increasing the implantation dose since the contribution of emitter current ($J_{emitter}$) and its related dark current to the total J_{sc} is very small. Contrary to J_{sc} , the open voltage shown in Figure (4) (c) increases when increasing the doping level in the emitter region due to the induced reduction in J_{dark} as demonstrated in equations (2) and (3). On the other hand, the fill factor is slightly decreased

$$J_{\text{dark}} = q N_c N_v \left(\frac{1}{N_A} \sqrt{\frac{D_n}{\tau_n}} + \frac{1}{N_D} \sqrt{\frac{D_p}{\tau_p}} \right) e^{-E_g/kT} \quad (2)$$

where N_A and N_D are the density of dopants (acceptor, donor) in the emitter and base region respectively, q is the charge value of an electron, E_g is the energy gap of the semiconductor material, N_c and N_v are the effective density of states in the conduction and valance bands, respectively; T is the device temperature, and k is Boltzmann's constant. D_n and D_p are the diffusion coefficient of electron and holes, respectively, which are given as follows (Liou and Wong, 1992).

$$D_n = \frac{1350 \times V_{\text{th}}}{\sqrt{1 + \frac{81 \times N_A}{N_A + 3.2 \times 10^{18}}}} \quad (3)$$


$$D_p = \frac{480 \times V_{\text{th}}}{\sqrt{1 + \frac{350 \times N_D}{N_D + 1.05 \times 10^{19}}}} \quad (4)$$

where V_{th} is the thermal voltage. And τ_n and τ_p are effective lifetime for minority electrons and holes, respectively as expressed in the following equations (Liou and Wong, 1992).

$$\tau_n = \frac{12}{1 + \frac{N_A}{5 \times 10^{16}}} \quad (5)$$

$$\tau_p = \frac{12}{1 + \frac{N_D}{5 \times 10^{16}}} \quad (6)$$

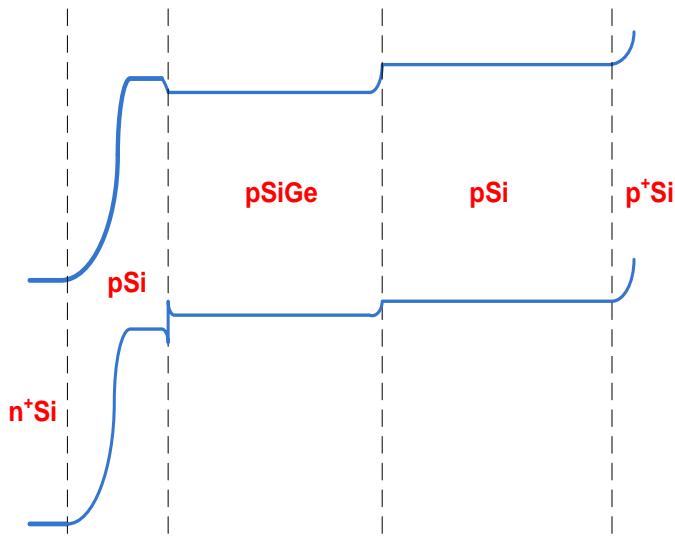

Figure (3) (c) demonstrates the effect of increasing base doping levels on the open voltage of the solar cell (V_{oc}). The V_{oc} initially decreases for low doping levels below $N_A = 1 \times 10^{16} \text{ cm}^{-3}$ and then increases when increasing the doping level in the base region until it reaches $N_A = 2 \times 10^{18} \text{ cm}^{-3}$. Thereafter, it sharply decreases for higher doping levels. In fact, the open circuit voltage is highly dependent on the recombination of carriers in the solar cell. At low bulk doping the primary recombination mechanism is surface recombination which is responsible for nearly 50% of photogenerated carriers. As the doping density increases, the amount of auger and radiative recombination increase due to increased electron and

Figure (3) (a) The cell efficiency, (b) short circuit current, (c) open voltage (d) fill factor versus base doping density for the SiGe based solar cell.

This behavior is mainly due to the increased carrier recombination rate in the base region due to the reduced Shockley-Read-Hall lifetime of carriers (τ_{SHR}) for low doping levels. However, for higher levels, the auger band-to-band recombination mechanism start to become dominant accompanied with energy band narrowing effect for higher doping levels (i.e. reducing E_g). Ultimately, the dark current density (J_{dark}) increases, and the resultant short circuit density (J_{sc}) is reduced as given in following equations (Singh et al., 2014; Boo et al., 2012).

$$J_{\text{sc}} = J_{\text{light}} - J_{\text{dark}} \quad (1)$$

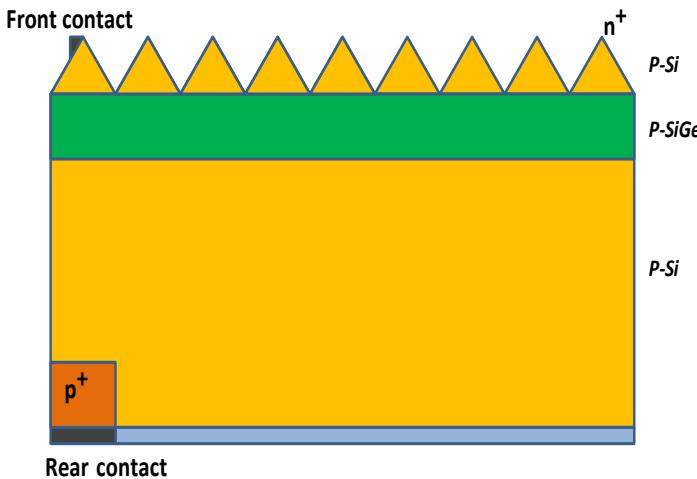


Figure (2) Energy band diagram of the SiGe based solar cell under equilibrium condition (Kadri et al., 2016).

3. Results and Discussions

Figures (3) (a), (b), (c), and (d) illustrate the dependence of achieved efficiency (E_{ff}), short circuit current (J_{sc}), open voltage (V_{oc}), and fill factor (FF) on the base (i.e., absorber) doping concentration (N_A) of the SiGe based device. The value of base doping that achieves the maximum cell efficiency is in the range of $8.34 \times 10^{17} \text{ cm}^{-3}$. It can also be seen from Figure (3) (a) that for low doping density, the electrical efficiency is low. By increasing doping density in the base region, the efficiency, the open-circuit voltage, and the fill factor increase until they approach maximum values. After that, they begin to decrease again.

For the short-circuit current, as shown in Figure (3) (b), it can be seen that as the doping density increases until a certain doping level is reached ($N_A = 8.34 \times 10^{17} \text{ cm}^{-3}$), the short circuit current gradually decreases. Then, it starts to decrease sharply for high doping levels.

Figure (1) Cross sectional view of n-Si /p-SiGe/p-Si based solar cell.

Table (1) Key parameters of n-Si /p-SiGe/p-Si based solar cell.

Parameter	Substrate Doping	Number of pyramids	Pyramid height	SiGe Thickness	Cell Thickness
Value	$7 \times 10^{17} \text{ cm}^{-3}$	4	1 μm	5 μm	50 μm

Figure (2) demonstrates the energy band diagram of the SiGe based solar cell under equilibrium condition. It can be noted that, the introduction of the SiGe material between the Si substrate and the Si top layer assists the light absorption process in the cell. Hence, it increases the photo generated carriers due to the reduced energy gap of the SiGe material. It also reduces the recombination current due to the introduced electric field between pSi/pSiGe interface, which sweeps the minority carriers towards the emitter region. Ultimately, it reduces the dark current (J_{dark}) in the cell, leading to enhanced electrical and optical performance.

namely, electrical conversion efficiency, short circuit current, voltage open, and fill factor on critical design variables in the device structure. Finally, in Section 4, conclusions are drawn.

2. The Structure of SiGe based Solar Cell

Figure (1) provides a cross-sectional view of the SiGe based solar cell. Within this structure, the top and the rear aluminum metals serve as the cell's front and back contacts, while the shallow n⁺ layer represents the cell's emitter region. The base region, however, consists of pyramid-shaped p-Si/p-SiGe/p-Si layers. In addition, the back-surface field (BSF) is defined in the device structure by the p⁺ region. Finally, the cell's front and the bottom surfaces of the cell are passivated by very thin SiO₂ layers. The physical structure of SiGe based solar cell shown in Figure (1), is first simulated using virtual fabrication tool, 2D-ATHENA simulator (Silvaco International, 2018), that allows for direct manipulation of materials, dimensions, and doping. In addition to its ability to simulate advanced solar cell design features including doping gradients, optical properties, back-surface fields, and contacts grid shading. Second, the electrical characteristics of simulated cell structure are numerically modeled using 2D-ATLAS simulator (Silvaco International, 2018). Outputs available include I-V characteristics and the derived parameters such as electrical conversion efficiency, short circuit current, open voltage and fill factor of the cell. Table (1) represents the primary parameters of the device structure under investigation. To model and investigate the electrical efficiency of the proposed SiGe-based solar cell, the cell combined equations such as Poisson, hole and electron continuity equations were used to evaluate carrier transport mechanisms in photovoltaic structure. Shockley-Read-Hall and band-band Auger models for Si and SiGe materials are considered to predict recombination currents. LUMINOUS simulator is used to calculate the photogenerated currents present in the cell and the light absorption and reflection rate in the device structure based on optical ray tracing approach (Silvaco International, 2018). In this investigation, air mass (AM 1.5) radiation with an incident density of 100mW/cm² is used as an illumination source.

efficiency of Si/SiGe solar cell when varying Ge content. Choudhary et al., (2013) had analyzed the performance of Si/SiGe based double junction (DJ) solar cell, the device structure of double junction solar cell consists of the series connection of an n on p Si junction on the top of an n/p $Si_{1-x}Ge_x$ junction. A tunneling junction was adopted for connecting the cells. The thickness of the SiGe layers and the Ge-content was found to be significant parameters that influence the overall conversion efficiency of the cell. Priyadarshini and Das, (2015) studied the impact of Ge content on efficiency of SiGe based radial p-n junction nanorod array solar cell with pyramidal structure. Kadri et al., (2016) has developed an analytical model to simulate the performance of thin SiGe solar cells with high-low junction emitter (n^+/n) of thin film SiGe/Si solar cell (c-Si)/n(SiGe)/p(c-Si) heterojunction. The findings revealed that the addition of Ge by 15% to crystal Si highly enhances short-circuit current density and cell efficiency, whereas the SiGe band-gap degrades particularly the open-circuit voltage. The results also indicate that the solar cell maximum efficiency increase by about 1.7%. More recently, Sadullah et al., (2020) investigated $Si_{1-x-y}Ge_xSn_y$ - Si_xGe_{1-x} based solar cell. The effects of different absorber layer thickness, doping concentrations of the absorber and BSF layers, Ge and Sn concentrations in $Si_{1-x-y}Ge_xSn_y$ are also studied for the proposed structure. Conversion efficiency as high as 19.9% been achieved for substrate thickness as low as 10 μm .

Generally speaking, it should be noted that the improved SiGe absorption nature increases the cell photogeneration current; however, the induced reduction of the SiGe band gap has an adverse effect on the open voltage of the cell which ultimately undermines the benefits of the SiGe layer in the structure of the cell. Thus, it remains an important challenge to find the optimum structure of effective SiGe based solar cells. This paper presents the pyramid solar cell utilizing a SiGe substrate that is compatible with the existing Si technology and is very simple to manufacture, and is likely to provide reasonable conversion efficiency for cheap solar cells. Extensive TCAD simulations and theoretical investigations on the electrical properties of the SiGe based solar cells were undertaken. Key design parameters influencing the electrical performance of the cell such as; Ge content in the SiGe material, SiGe layer thickness, and silicon layer thickness (pyramid height) have also been studied. The reset of the paper is organized as follows. Section 2, presents a comprehensive device structure for SiGe-based solar cell, doping profile and simulation setup. Section 3 presents and closely explores the computed dependence of performance

1. Introduction

As a result of global climate change and rising energy prices, the need to secure an affordable renewable energy resource has progressively become an international priority in the past few years. The percentage of global fossil fuel consumption is, in fact, expected to be the source of more than three-quarters of the world's power generation by 2040. Despite the predicted steady rise in oil and gas prices, less than 10 percent of global energy production is expected to come from renewable energy sources by 2030, mainly hydroelectric, solar, wind, and biomass (International Energy Agency, 2016). A significant amount of research effort has been spent in recent years to improve the optical and electrical performance of the cells, for example, different antireflection coatings and light trapping techniques (Chen et al., 2011; Chen et al., 2019; Sheng et al., 2019; Chhajed et al., 2008; Sun et al., 2019; Bruce et al., 2019; Alhashemi et al., 2020), selective front/rear surface field emitters, interdigitated back contacts, and carrier selective contacts such as hydrogenated nanocrystalline silicon oxide (nc-SiO_x: H) (Woehl et al., 2011; Procel et al., 2019; Chiu et al., 2020; Zhao et al., 2020). In addition to effective surface passivation approaches (Zhuang et al., 2019; Guo et al., 2020) which have been recently proposed to improve the optical and electrical performance of solar cells. Another feasible solution to improving the performance of solar cells is the utilization of indirect band-gap material in their structures. In this scope, recent findings have shown that, in view of their compliance with the conventional technology of processing Si-based solar cells, silicon germanium (SiGe) material has been considered a favorable choice for enhancement and optimization of solar cell optical and electrical efficiencies. Indeed, in the SiGe material (small band gap), the photogeneration current is projected to increase dramatically as photons are adequately absorbed in the near infrared region of the solar spectrum. The open circuit voltage would, on the other hand, undergo an inevitable decrease due to the decrease of the SiGe band-gap associated with the increase of the intrinsic carrier concentration (Abdul Hadi et al., 2014). Many researchers have explored the use of the SiGe material in many variants of solar cells such as SiGe/Si hetero-solar cells and SiGe thin film solar cells. Liao et al., (2012) have experimentally investigated the optimal Ge content in the SiGe layer of a hetero-structure thin film solar cell; and an enhancement of about 4% more than that in the Si-based solar cell has been obtained. The efficiency of n-SiGe/p-Si based heterojunction solar cell for different Ge-contents is studied in (Das and Choudhary, 2012). The study found a nonlinear variation of overall

تحليل أداء الخلية الشمسية المعتمدة على Si/SiGe ذات الشكل الهرمي: دراسة باستخدام المحاكاة

زياد الطراونة
مصطفى محيلان

ملخص

أدت الحاجة إلى تأمين موارد طاقة متتجدد ذات تكلفه رخيصة إلى تطوير خلايا شمسية ذات كفاءة عالية على مدى السنوات القليلة الماضية. بالعادة يتم تعزيز كفاءة الخلايا الشمسية من خلال التطورات التكنولوجية في تصنيع الخلايا الشمسية باستخدام أشباه الموصلات متعددة الببورات أو غير المتبلورة بدلاً من الخلايا الشمسية التقليدية لأشباه الموصلات البلورية. البديل الآخر هو استخدام مواد SiGe في بنية الخلية الشمسية. تتوافق مادة SiGe مع تقنية Si المعتمدة وهي سهلة الإنتاج للغاية، ويمكن أن توفر على الأرجح أداء تحويل كافياً للخلايا الشمسية الرخيصة. في هذا البحث، تم دراسة كفاءة الخلية الشمسية المعتمدة على SiGe ذات الشكل الهرمي بشكل عميق. وقد تحسنت الكفاءة الكهربائية إلى 26.5%. في النهاية، تم دراسة تأثير عوامل التصميم الرئيسية التي تؤثر على الكفاءة الكهربائية للخلية الشمسية مثل كمية Ge في مادة SiGe وسمك طبقة SiGe بالإضافة إلى سماكة طبقة السيليكون (ارتفاع الهرم).

Performance Analysis of Pyramid Si/SiGe based Solar Cell: A Simulation Study

Ziyad Al Tarawneh*

Mustafa Muheilan

Abstract

The need to secure affordable renewable energy resources has progressively driven the development of more efficient solar cells over the last few years. Solar cell efficiency enhancement will potentially come from technological developments in solar cell manufacturing by using multi crystalline or amorphous semiconductors rather than traditional single crystal semiconductor solar cells. The alternative is to use SiGe materials in the cell's structure. The SiGe material is consistent with the established Si technology and is very simple to produce, and can likely provide sufficient conversion performance for inexpensive solar cells. In this paper, the efficiency of the pyramid-based SiGe solar cell is closely investigated. The electrical efficiency improved to 26.5%. Finally, key design parameters affecting the cell's electrical efficiency such as; Ge content in the SiGe material, SiGe layer thickness, and silicon layer thickness (pyramid height) have been studied.

Keywords: Solar cells, SiGe material, Heterostructure, Ge content

* قسم الهندسة الكهربائية، جامعة مؤتة، الأردن.

تاريخ قبول البحث: 3/12/2020.

تاريخ تقديم: 30/3/2020.

© جميع حقوق النشر محفوظة لجامعة مؤتة، الكرك، المملكة الأردنية الهاشمية، 2021.

Alaoui, M., Nouh, S. & Marzak, A. (2017). Two new fast and efficient hard decision decoders based on Hash techniques for real time communication systems. Casablanca Morocco, s.n.

Alnawayseh, S. & Loskot, P, (2012). Ordered statistics-based list decoding techniques for linear binary block codes. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1-12.

Jin, W. & Fossorier M. (2006). Probabilistic sufficient conditions on optimality for reliability based decoding of linear block codes. s.l., s.n., 2235-2339.

Jin, W. & Fossorier, M., Jan (2007). Reliability-based soft-decision decoding with multiple biases. IEEE Transactions on Information Theory, 53(1). 105-120.

Wu, Y. & Hadjicostis, C., (2007). Soft-decision decoding using ordered recodings on the most reliable basis. IEEE transactions on information theory, 53(2), 378-393.

Wu, Y. & Hadjicostis, C. (2007). Soft-decision decoding of linear block codes using preprocessing and diversification. IEEE transactions on information theory, 53(1), 378-393.

References:

Van Wonterghem, J., Alloum, A., Boutros, J. & Moeneclaey, M. (2017). On performance & complexity of OSD for short error correcting codes in 5G-NR. Balqan, s.n.

Azouaoui, A., Chana, I. & Belkasmi, M. (2012). Efficient Information Set Decoding Based on Genetic Algorithms. International Journal of Communications Network and System Sciences, 5(7).

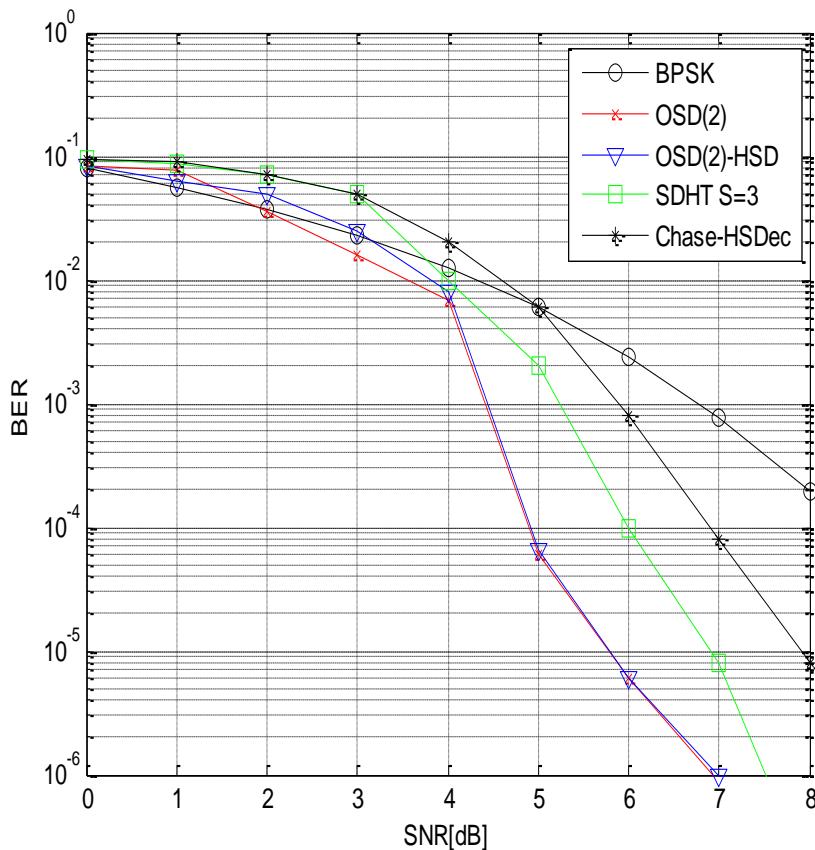
Valembois, A. & Fossorier, M., May (2004). Box and match techniques applied to soft-decision decoding. IEEE Transactions on Information Theory, 50(5), 796-810.

Yue, C., Shirvanimoghaddam, M., Vucetic, B. & Li, Y. (2019). Segmentation-Discarding Ordered-Statistic Decoding for Linear Block Codes. s.l., s.n.

Yue, C., Shirvanimoghaddam, M., Vucetic, B. & Li, Y. (2019). Hamming Distance Distribution of the 0-reprocessing Estimate of the Ordered Statistic Decoder. Paris, France, s.n., 1337-1341.

Fossorier, M., Dec (2002). Reliability-based soft-decision decoding with iterative information set reduction. IEEE Transactions on Information Theory, 48(12), 3101-3106.

Yagi, H. (2005). A study on complexity reduction of their reliability-based maximum likelihood decoding algorithm for block codes, s.l.: Waseda University.


Alaoui, M., Nouh, S. & Marzak, A. (2018). High Speed Soft Decision Decoding of Linear Codes Based on Hash and Syndrome Decoding. International Journal of Intelligent Engineering & Systems, pp. 94-103.

Fossorier, M. & Shu L., (1995). Soft-decision decoding of linear block codes based on ordered statistics. IEEE Transactions on Information Theory, 41(5), 1379-1396.

Fossorier, M. & Shu L., May (1996). Computationally efficient soft-decision decoding of linear block codes based on ordered statistics. IEEE Transactions on Information Theory, 42(3), 738-750.

Alaoui, M., Nouh, S. & Marzak, A. (2018). A low complexity soft decision decoder for linear block codes. Casablanca, Morocco, s.n.

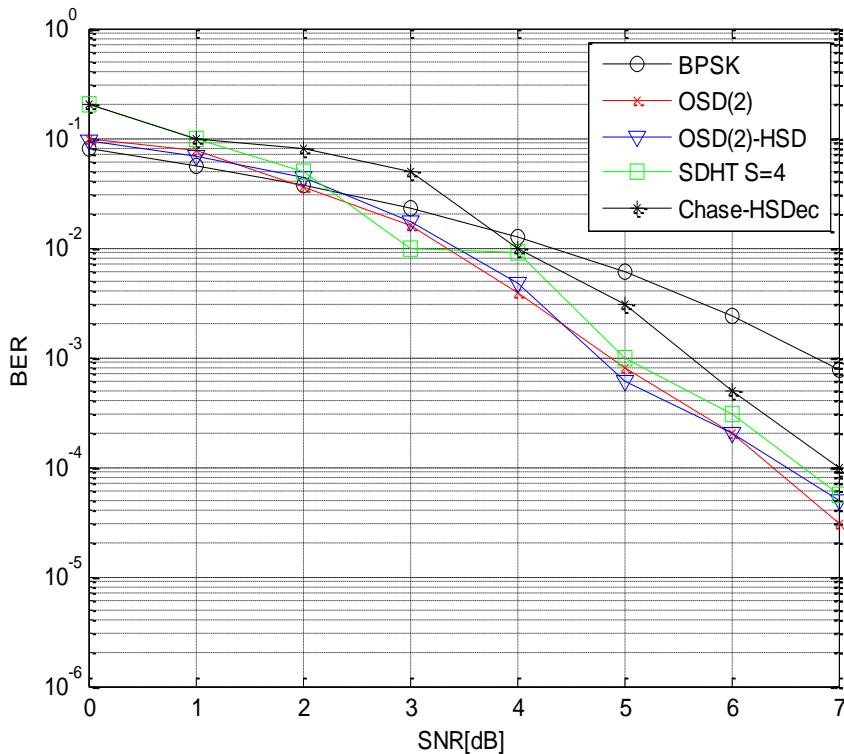
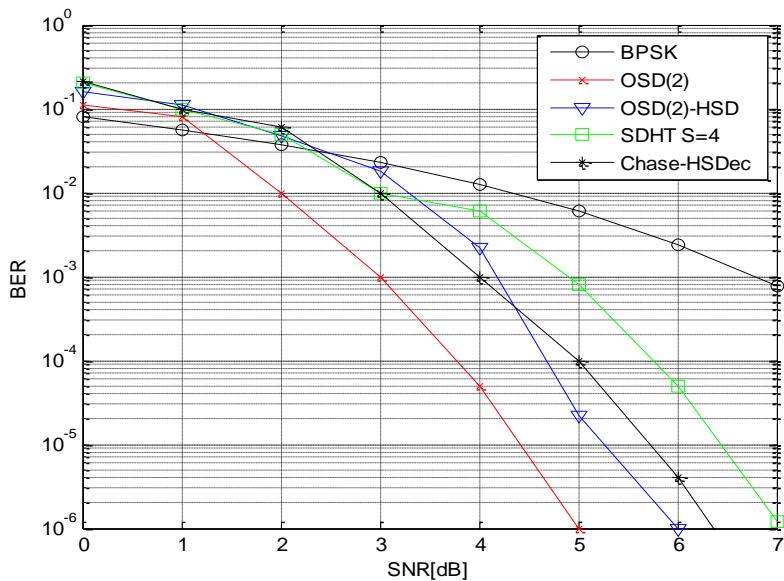
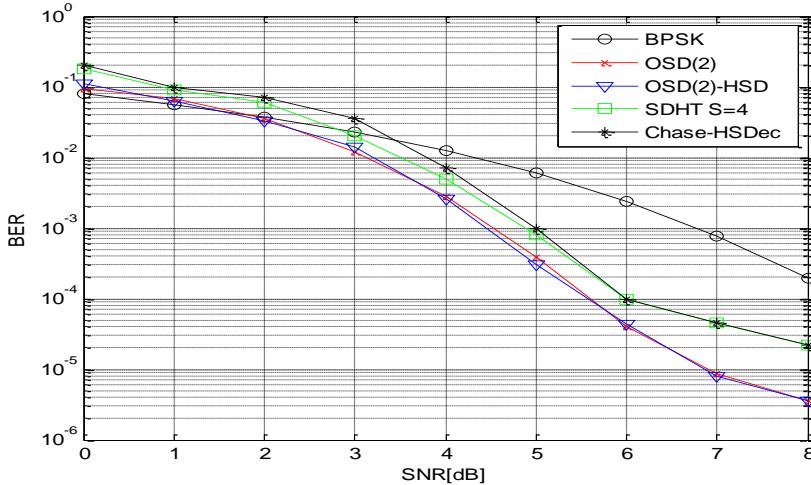

algorithm OSD-HSD yields to better error correcting performance for certain scenarios compared to original OSD, Chase-HSDec, and SDHT. Specially for medium to long linear block codes with high code rate ($K/N>0.5$) and small d_{min} such as BCH (127,120,3) in terms of BER. Additionally, the proposed model shows a significant reduction of complexity in terms of the coding list length. Moreover, the results exhibit that the proposed algorithm OSD-HSD yields to the same or slightly less error correcting performance compared to original OSD. It also performs better than Chase-HSDec and SDHT for medium to long linear block codes with high code rate ($K/N=0.5$) and large d_{min} such as BCH (63,45,7) in terms of BER. But by significant reduction in complexity in term of coding list length compared to other used competitors in this paper. It is worth mention here that the proposed OSD-HSD can be implemented in any linear block code for which the error patterns can be stored in memory.

Figure (5) The BER of the (127,120,3) BCH code over an AWGN channel


Conclusion

In this paper the OSD with hash and syndrome decoder (OSD-HSDec) decoder was presented. The low complexity hard decision decoder was integrated as component decoder with OSD to accelerate the correction of a received data. The main idea was to create the error pattern list and so the coding list. This, was achieved using the syndrome and hash techniques by storing each error pattern in short list with equal to the decimal value of its syndrome and correcting the most reliable bits. When the receiver receives a sequence, it accesses directly to the error patterns corresponding to the decimal value of its syndrome without the need to access all error patterns for certain weigh as in OSD. The simulation results show that the proposed


Figure (4) The BER of the (64,57,4) BCH code over an AWGN channel

In Figure 5, we present a comparison of the performances of OSD (2), OSD (2)-HSD, SDHT, Chase-HSDec for linear block code with the large code rate and long length such as BCH (127,120, 3) code. It shows that the proposed OSD(2)-HSD outperforms remarkably the SDHT up to $s=3$ with more than 1.2 dB and outperforms Chase-HSDec with error correcting capability $t_c=1$ by more than 2 dB at $BER=10^{-5}$ with average number of error patterns equal to one error pattern. Also OSD (2)-HSD and OSD (2) have the same performance with number of errors for OSD (2) equal to 7140.

Figure (3) The BER of the (63,45,7) BCH code over an AWGN channel

The BER of the (64,57,4) BCH code over an AWGN channel is shown in Figure 4 assuming OSD (2) with large code rate and error correcting capability $tc \leq 1$, and assuming OSD (2)-HSD and SDHT with $S=6$ and Chase-HSDec with $t=4$. We observe that OSD (2)-HSD, SDHT, and Chase-HSDec have the same BER performance for the BER values smaller than 10^{-5} . Also numerical results show that, in general, the OSD (2)-HSD decoding can achieve approximately the same BER as OSD (2), SDHT, and Chase-HSDec while using less test error patterns.

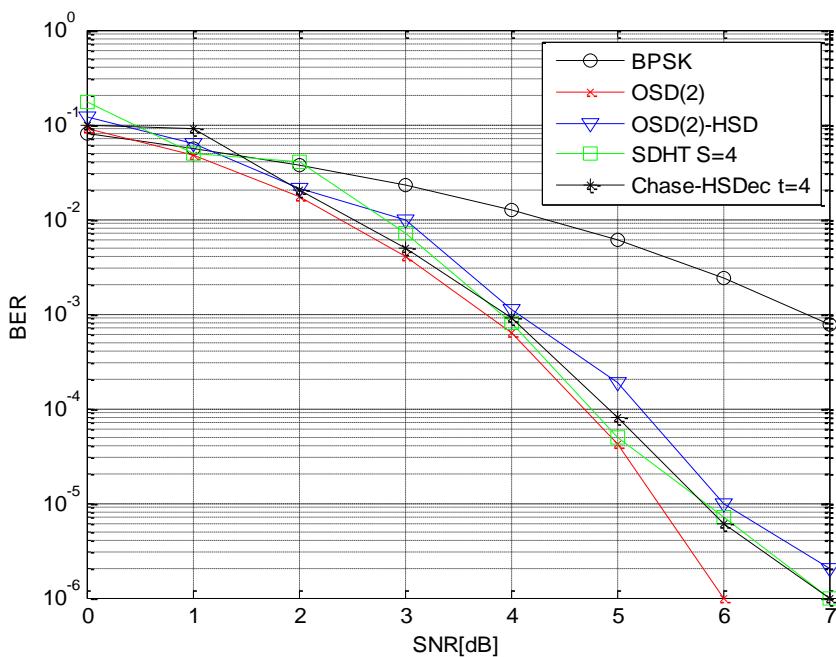


Figure (2) The BER of the (31,26,3) BCH code over an AWGN channel

In Figure 2 we present a comparison of the performances of OSD (2), OSD (2)-HSD, SDHT, Chase-HSDec for linear block code with the large code rate and short length such as BCH (32,26, 3) code. It shows that the proposed OSD(2)-HSD outperforms remarkably the SDHT up to $s=5$ and Chase-HSDec with error correcting capability $t_c = 1$ by more than 1 dB at $BER = 10^{-5}$ with average number of error patterns equal to one error pattern. Also OSD (2)-HSD and OSD (2) have the same performance but with number of test error patterns for OSD (2) equal to 325.

In Figure 3 , we present a comparison of the performances of OSD (2), OSD (2)-HSD, SDHT, Chase-HSDec for linear block code with the large code rate and medium length and large d_{min} and error correcting capability $t_c \geq 3$ such as BCH (63,45, 7) code. It shows that the proposed OSD(2)-HSD outperforms remarkably the SDHT with $s=5$ by about 1.2 dB and Chase-HSDec with $t= 3$ by less than 1 dB at $BER = 10^{-5}$ with average number of error patterns equal to one error pattern. However, OSD (2) outperform OSD (2)-HSD slightly by less than 1 dB at $BER = 10^{-5}$ but with number of errors for OSD (2) larger than OSD (2)-HSD by 99% .

The BER of the (31,16,7) BCH code over an AWGN channel is shown in Figure 1 assuming OSD (2) with $K = 16$ and code rate equal approximately 0.5, and assuming OSD (2)-HSD and SDHT with $S=6$ (where s is the error patterns weight) and Chase-HSDec with $t=4$. The number of the test error patterns for the OSD (2), and OSD (2)-HSD, SDHT and Chase-HSDec are 120,1,4, and 16, respectively. We observe that OSD (2)-HSD, SDHT, and Chase-HSDec have the same BER performance for the BER values smaller than 10^{-5} , and OSD (2) outperforms all other decoders by at most 1 dB at 10^{-6} . Our numerical results show that, in general, the OSD (2)-HSD decoding can achieve approximately the same BER as SDHT, and Chase-HSDec for small to medium SNR values while using less test error patterns

Figure (1) The BER of the (31,16,7) BCH code over an AWGN channel.

- Ordering the received sequence r' , r'' , and Gaussian elimination process as in (S. Alnawayseh, P. Loskot, 2012):

$$2Nflop + N \log_2 N flop + N_{min}(K \cdot N - K)^2 Bops + (K + K(N - K)Bops$$

- The complexity of syndrome and hash computation:

$$(\log(N) \cdot \log(N - K) + (N - K))$$

- The error patterns and coding list generating and Euclidian distance computation between two vectors of size n :

$$\frac{\sum_{t=0}^I \binom{N}{t}}{2^{N-K}} \times N$$

Table 1 shows, a comparison between coding list length for different decoding algorithms utilizing hash and syndrome decoding such as SDHT (Alaoui et al., 2018) and Chase-HSDec (Alaoui et al., 2017) and pure OSD (I), OSD(I1,I2) (Alnawayseh & Loskot, 2012) (Fossorier, & Shu, 1995).

Table (1) coding list size for different decoding algorithms

Algorithm	List size
OSD(I)	$\sum_{t=0}^I \binom{K}{t}$
OSD(I ₁ , I ₂)	$\sum_{t=0}^{I_1} \binom{K_1}{t} + \sum_{t=0}^{I_2} \binom{K_2}{t}$
Chase-HSDec	$\binom{N}{t}$
SDHT	$\frac{\sum_{i=1}^{t+1} C_i^N}{2^{N-K}}$
OSD(I)-HSD	$\frac{\sum_{t=0}^I \binom{N}{t}}{2^{N-K}}$

Simulation results and comparison with other decoders.

In this section, the results of the proposed decoder OSD-SHD are given for some linear block codes with a comparison with other decoding algorithms over the AWGN channel. The error correcting performances will be represented in terms of Bit Error Rate (BER) and Signal to Noise Ratio (SNR= E_b/N_0).

14: for i: to length of \mathcal{E}_m find the $\tilde{\mathcal{C}}_{best}$ by calculating minimum Euclidean distance between decimal version of $\tilde{\mathcal{C}}$ which is R by $\min(\text{Ed}(R, r))$

15: estimation \mathcal{C}_{best} corresponding to initial received sequence r is obtained by performing inverse permutations .i.e. $\mathcal{C}_{best} = \lambda'[\lambda''[\tilde{\mathcal{C}}_{best}]]$.

With the use of the hash function, the search for the list that contains all possible error vectors of weight less than or equal to s is directly determined and the closest codeword to the received sequence can be easily found. This idea was to reduce considerably the search time and therefore the decoding process.

Complexity analysis

In this paper, linear block codes were investigated , where the complexity of coding is $O(N.K)$; for cyclic codes yield to alleviate the complexity to $O(\log(N).\log(N-K))$ (Azouaoui., Chana, & Belkasmi, 2012). We note that in this paper we use the OSD algorithms integrated with syndrome generated from reordered parity check matrix after the Gaussian Elimination G". The OSD algorithms is considered one of the list decoding algorithms, where the decoding (time) O complexity of the list decoding algorithms can be measured as the list size given by the number of the test codewords that are examined in the decoding process (Alnawayseh, S. and Loskot, P., 2012). While the Maximum Likelihood decoding (ML) has the complexity $O = 2^K$ which rises up sharply with large K. where the OSD complexity is the error patterns are generated in stages. For instance, for stage (I) all possible changes from zero to I of K MRIPs are made to generate stage or order(I) error patterns. Finally, the corresponding candidate codewords list is created after re-encoding. The OSD of order of I requires $\sum_{j=0}^I \binom{K}{j}$ error patterns where K is the number of information bits and I is the number of assumed errors in information . It should be mentioned here that in OSD-HSD, the error patterns and coding list generation is different. Here the syndrome of a received word h is equal to the sum of its parity digits and the parity check digits recomputed by re-encoding the information part of H. So, the complexity of syndrome computation should be considered. The complexity measure for OSD-HSD can be summarized into three main parts;

Input:

Generator matrix G , received sequence r , Order I , and parameters λ , y_i hard decision of received sequence r .

Output:

Optimal codeword estimation C_{best}

1: Calculate the reliability value $\alpha_i = |r_i|$

2: Perform the hard-decision: $y_i = \begin{cases} 1 & \text{for } r_i < 0 \\ 0 & \text{for } r_i > 0 \end{cases}$

3: First permutation: $r' = \lambda'[r]$, $G' = \lambda'[G]$

4: Gaussian Elimination : $r'' = \lambda''[r']$, $G'' = \lambda''[G']$.

5: Calculate the parity check matrix H' for G'' and parity check H'^T matrix transpose .

6: Calculate the binary version of r'' which is d .

7: Calculate the syndrome of d , $SY = \text{mod}(d, H'^T)$.

8: Calculate the hash value m for SY in step 7

9: Create a list of test of error patterns \mathcal{E} of $e = [e_1, e_2, \dots, e_N]$ of length $L = \sum_{j=0}^I \binom{N}{j}$

10: Calculate SY and hash value for each error pattern in the list of test of error patterns \mathcal{E}

11: Create a short list from error patterns \mathcal{E} in step 9 with common value of hash value m .

12: Correct the first K positions of $d = [d_1, d_2, \dots, d_K]$ by corresponding first K positions in error patterns list \mathcal{E}_m with hash value m equal to hash value for d syndrome in step 8 as $d_{corrected} = (d \otimes \mathcal{E}_m)$.

13: For i : to length of \mathcal{E}_m create a list of test codewords by encoding d_c
 $\tilde{c}_m = \text{mod}(d_c \cdot G'')$

OSD-HSD:

In this paper, a Soft in Hard Out decoder, called Soft Decision Decoder by Hash and syndrome Techniques (SHT) is presented and integrated with OSD. The syndrome and hash technique enables to correct all errors of weight less than or equal to a fixed threshold. To verify if there are errors during a transmission operation or not, we compute the syndrome of the received sequence after reordering according to most reliable positions as in (1) and obtaining the MRIP after permutation λ'' . This cannot be achieved before generating the corresponding parity check matrix H' from the generator matrix G'' . So the syndrome of the reordered received sequence is calculated as follow:

$$S(r'') = S(\tilde{C}) + S(e) = r'' \cdot H'^T \quad (4)$$

Where H'^T is the transpose of parity check matrix H' and $e = [e_1, e_2, \dots, e_N]$ is the test error pattern for the whole received sequence N bits.

According to the value of $S(r'')$, a specific list of test error patterns is determined from the responding hash table. To reduce the complexity and time search of the most probable error patterns in traditional OSD, we propose the use of the hash techniques by storing each error pattern in the specific of number equal to the decimal value of its syndrome. When the receiver receives a sequence, it accesses directly to the error patterns corresponding to the decimal value of its syndrome. Precisely, the proposed hash function has the following algorithm as in (Alaoui et al., 2018).

$$m = \sum_{j=0}^{N-K-1} POW_2 \cdot SY[N-K-1-j] \quad (5)$$

Where m is the hash value of syndrome SY and POW_2 Base 2 power and scale floating point. The common points between the errors pattern stored in the same list is the number m. which means for OSD of order of I which requires $\sum_{j=0}^I \binom{K}{j}$ error patterns a number of short test error pattern lists are created for a syndromes with equal value of hash $m = \text{hash}(\text{Syndrome}(e))$. But here we have to clarify that OSD-HSD of order I required $e = [e_1, e_2, \dots, e_N]$ which is error pattern of length N and not K as in traditional OSD, so total length for all created short test error patterns will not exceed $\sum_{j=0}^I \binom{N}{j}$. The OSD-HSD works as follow:

I. OSD and OSD-HSD algorithms.

The OSD decoding resumes by reordering the received sequence of reliabilities as in (Fossorier, M. and Shu Lin, May 1996),

$$|r'_1| \geq |r'_2| \geq \dots |r'_N| \quad (2)$$

where the tilde is used to denote the ordering. This ordering of the reliabilities defines a permutation, λ' , i.e.,

$$r' = \lambda'[r] = [r'_1, \dots, r'_N]$$

The permutation λ' corresponds to the generator matrix $G' = \lambda'[G]$ having the reordered columns. In order to obtain the most reliable independent positions (MRIPs) for the first K bits in the code word, additional swapping of the columns of G' may have to be used which corresponds to the permutation λ'' , and the generator matrix $G'' = \lambda''[G']$. The matrix G'' can be manipulated into a row (or a reduced row) echelon form using the Gauss (or the Gauss-Jordan) elimination.

After the transformation, the first K index positions $[1.2.\dots.K]$ are associated with the most reliable basis (MRB) [7], and the rest of positions $[K+1.K+2.\dots.N]$ are associated with redundancy part. For the phase-0 reprocessing, the hard decision is performed on ordered sequence r'' using decision rule in (1) to obtain the estimated information y'' after permutation λ'' . let y''_B denoted the K positions of y'' corresponding to MRIP. So the first candidate word is obtained by re-encoding as (Alnawayseh, S. and Loskot, P., 2012):

$$\tilde{C} = y''_B G'' \quad (3)$$

Obviously, \tilde{C}_0 is the transmitted codewords if and only if there are no errors in MRB positions, otherwise, a test error pattern (TEP) $e = [e_1, e_2, \dots, e_K]$ is added to MRB hard decision. For the rest stages of OSD, a number of TEPs are checked to generate codeword candidates until a predetermined maximum candidate number is achieved. For example the OSD of order of I requires

$\sum_{j=0}^I \binom{K}{j}$ error patterns where K is the number of information bits and I is the number of assumed errors in information. Finally, the best estimation C_{best} corresponding to initial received sequence r is obtained by performing inverse permutations i.e. $C_{best} = \lambda'[\lambda''[\tilde{C}_{best}]]$.

is compared to some competitors such as original OSD and other related developed competitors.

The remainder of this paper is structured as follows. In section 2, the proposed system model and notations is presented. In section 3, the OSD algorithm and the proposed OSD-HSD are shown. In section 4, a complexity analysis for OSD-HSD and other decoding algorithms in literature are studied and compared. In section 5, the simulation results of the proposed decoder is compared related to previous models. Finally, a conclusion and possible future directions of this research are outlined in section 6.

System model & notations:

The binary linear block code $C(N, K, d_{min})$ is considered in this study, where K and N denote the information block size and codeword length and the minimum hamming distance between any two codewords d_{min} , respectively. Let $\mathbf{b} = [b_1, b_2, \dots, b_K]$ and $\mathbf{c} = [c_1, c_2, \dots, c_N]$ denote the information sequence and codeword, respectively. Given the generator matrix G , the encoding operation can be described as $\mathbf{C} = \mathbf{b} \cdot \mathbf{G}$. We suppose an additive white Gaussian Noise (AWGN) channel and binary phase shift keying (BPSK) modulator.

Let $\mathbf{s} = [s_1, s_2, \dots, s_N]$ denote the modulated signals, where $s_i = -1^{c_i} \in \{\pm 1\}$. At the channel output, the received signal is given by $\mathbf{r} = \mathbf{s} + \mathbf{n}$, where \mathbf{n} is the vector of white Gaussian noise samples with zero mean and variance $N_0/2$. In general, if the codewords in C have equal transmission probability, the log-likelihood-ratio of the i -th symbol of the received signal can be calculated as $\delta_i \triangleq \frac{\ln p_{r(c_i=1|r_i)}}{\ln p_{r(c_i=0|r_i)}}$ [13]. Bitwise hard decision can be used to obtain the codewords estimation and $\mathbf{y} = [y_1, y_2, \dots, y_N]$ according to following rule:

$$y_i = \begin{cases} 1 & \text{for } r_i < 0 \\ 0 & \text{for } r_i > 0 \end{cases} \quad (1)$$

where y_i is the estimation of the codeword bit c_i .

the size of the candidates list, while it carries large calculations because of the coordinating procedure.

Reliability based decoding was proposed in (Jin et al., 2007) to enhance the performance. Also different skipping and stopping criteria were utilized in (Wu & Hadjicostis, 2007) to discard less probable candidates. All previous mentioned methods were integrated with the iterative information set reduction (IISR) technique in (Fossorier, Dec 2002) to further reduce the complexity. The original OSD was generalized in (Alnawayseh, & Loskot, 2012) by assuming segmentation of the most reliable independent positions of the received bits. Segmentation was shown to overcome several drawbacks of the original OSD overlooks candidates generated across partitions so that a dramatic performance degradation is resulted. Also a fast OSD algorithm combining stopping rules from (Wu & Hadjicostis, 2007) and sufficient conditions from (Jin & Fossorier, 2006) was proposed in (Van Wonteghem., Alloum., Boutros, & Moeneclaey, 2017), which can reduce the complexity especially in high signal-to noise ratios (SNRs). Also a new fast decoding algorithm combining segmentation-discarding technique and portioning and easily calculated stopping rule were proposed in (Yue., Shirvanimoghaddam., Vucetic, & Li, 2019) and (Yue et al., 2019). However, but the generation of the test error patterns is still complicated.

Soft Decision Decoder by Hash Techniques (SDHT) is proposed in (Alaoui., Nouh, & Marzak, 2018). In this technique, all errors patterns of weight less than or equal to a fixed threshold is permitted to be corrected. The hash table was also used for alleviating the temporal complexity of the syndrome decoding algorithm. In (Alaoui., Nouh & Marzak, 2017), two new fast and efficient decoding algorithms to decode linear block codes on binary channels were presented. The main idea was based on a new efficient hash function that permits to find the error pattern directly from the syndrome of the received word. In (Alaoui et al., 2018), the chase algorithms with hash soft decision decoder (Chase-HSDec) was developed and integrated with low complexity hard decision decoder (HSDec) as component decoder. The use of HSDec in the chasing technique reduces the temporal complexity and yield to error correcting performance. However, this algorithm was applied to decode some BCH and QR codes only.

In this paper, the original OSD was modified, by developing OSD with Hash and Syndrome Decoder (OSD-HSD). The low complexity hard decision decoder is integrated as component decoder. The proposed decoder

Introduction:

One of the most important tools to decrease the channel impairments effects on transmitted data over communication medium can be categorized into two main categories; increasing power efficiency and using forward error correction codes (FEC). The main idea of FEC is to add some redundancy bits to the original message that enable the receiver side to detect and correct errors occurred through transmission for certain limits. So more efficient coding process probably leads to more complex decoding algorithms at destination. In this case, trade-off between targeted bit error rate or quality of service and decoding complexity is necessary. As for different applications requirements, different limitations exist. In some applications, it is essential to reduce the process complexity and time latency at destination for different reasons such as power imitations. Based on this, an efficient decoding algorithms was developed for variable coding techniques. Many decoding algorithms for linear block codes were proposed in literature (YAGI, 2005). Most of these algorithms varied between hard decisions decoding which works on binary form and use hamming distance and in contrast soft decision decoding deals with received symbols and utilize Euclidian distance and achieves better bit error rate (BER). The main idea behind most of these algorithms is based on re-ordering process for the received sequence according reliabilities of soft received bits. And then re-encoding after modifying by constructed a list of test error patterns in certain way and with different unique different stopping criteria (Alnawayseh & Loskot, 2012). Ordered Statistics Decoding (OSD) was proposed in 1995 which is a soft input soft output decoder which is as an approximate maximum likelihood (ML) decoder for block codes (Fossorier & Shu, 1995)

Much previous work has focused on improving OSD in terms of complexity reduction without significant reduction in the performance. ~~and~~ Some remarkable progresses have been achieved (Fossorier., Shu & May 1996) (Fossorier, Dec 2002) (Valembois., Fossorier, & May 2004) (Jin., Fossorier & Jan 2007) (Wu & Hadjicostis, 2007) (segmentation). The complexity of the list decoding was the main aspect of complexity which was mainly simplified and reduced creating, skipping, and stopping rules as in (Jin et al., 2007) and (Wu & Hadjicostis, 2007) Among numerous variants of the list decoding, the structural properties of the FEC code are utilized to reduce the OSD complexity as in (Alnawayseh & Loskot, 2012). The Box-and-Match algorithm (Valembois et al., 2004) can greatly reduce

خوارزمية فك ترميز أو تشفير جزيئات المعلومات حسب القيم المطلقة لجزئيات المعلومات باستخدام مفك تشفير التجزئة والمترابطة

سيف عناد النوايسة

ملخص

تعد خوارزمية فك ترميز أو تشفير جزيئات المعلومات حسب القيم المطلقة لجزئيات المعلومات (OSD) أداة فك ترميز فعاله ذات مدخلات رقمية صحيحة تستخدم قائمة بأنماط الخطأ المحتملة. يستخدم OSD وحدة فك ترميز البيانات الرقمية بعد تصحیح جزئيات المعلومات الأكثر موثوقية من خلال قائمة طويلة من أنماط أخطاء المتوقعة. في هذا البحث، تم تطوير OSD الأصلي باستخدام مفك تشفير التجزئة والمترابطة (OSD-HSD)، حيث تم دمج وحدة فك ترميز بسيطة ذات مدخلات رقمية صحيحة مع وحدة فك التشفير OSD. كانت الفكرة الرئيسية هي إنشاء قائمة أنماط الخطأ باستخدام تقنيات التجزئة من خلال تخزين كل نمط خطأ في قائمة مختصرة بقيمة عشرية متساوية لمترابطته (Syndrome) وتصحيح جزئيات البيانات الأكثر موثوقية. وقد لوحظ أنه عندما يستلم المتلقي مجموعة من جزئيات البيانات (bit)، فإنه يصل مباشرةً إلى أنماط الخطأ المقابلة لقيمة العشرية لمترابطتها دون الحاجة إلى الوصول إلى جميع أنماط الخطأ لوزن معين كما هو الحال في OSD بالنسبة لهذا السيناريو، تُظهر نتائج المحاكاة وتحليل الرياضي لمدى تعقيد نموذج فك التشفير المقترن يؤدي نتائج جيدة تتعلق بالأداء من حيث تصحيح الأخطاء في البيانات المرسلة وتقليل تعقيد النموذج مقارنة بـ OSD. والعديد من خوارزميات فك التشفير الأخرى التي تستخدم فك تشفير مترابطة التجزئة مثل خوارزميات فك ترميز بتقنية التجزئة (Chase-HSDec) و SDHT. أظهر نموذج فك التشفير المقترن أداءً جيداً من حيث BER والوقت اللازم لعملية فك التشفير. خاصة لخوارزميات التشفير الطويلة والمتوسطة ذات معدل التشفير المرتفع وقيم المنخفضة d_{min} عن طريق تقليل طول قوائم أنماط أخطاء المتوقعة للمعلومات المرسل. تنتج أيضاً الخوارزمية المقترنة OSD-HSD نفس أداء تصحيح الخطأ أو أقل قليلاً (أقل من 1 ديسيل) مقارنة بأداء OSD الأصلي وأداء أفضل من المنافسين الآخرين لأковاد الكتل الخطية المتوسطة إلى الطويلة ذات معدل التشفير المرتفع وقيم المرتفعة d_{min} من حيث BER. ولكن عن طريق تقليل التعقيد بشكل كبير من حيث قائمة الترميز.

Ordered-Statistic Decoding of Linear Block Codes Utilizing Hash and Syndrome

Saif E. A Alnawayseh^{*}

Abstract

The Order Statistics Decoding (OSD) algorithm is an efficient soft input hard output decoder that uses a list of most likely error patterns. OSD uses a hard decision decoder after correcting the most reliable bits by a long list of the test error patterns. In this paper, the original OSD was developed with hash and syndrome (OSD-HSD) decoder where the low complexity hard decision decoder is integrated as component decoder. The main idea was to create the error pattern list using the hash techniques by storing each error pattern in short list with equal decimal value of its syndrome and correcting the most reliable bits. It was observed that when the receiver receives a sequence, it accesses directly to the error patterns corresponding to the decimal value of its syndrome without the need to access all error patterns for certain weigh as in OSD. For this scenario, the simulation results and complexity analysis show that the proposed solution yields to good error correcting performances and complexity reduction compared to original OSD and many other decoding algorithms utilizing hash syndrome decoding such as the chase algorithms with hash soft decision decoder (Chase-HSDec) and soft decision decoder by hash technique (SDHT). The proposed decoder has shown a good performance in terms of BER up to 10^{-5} with reduced temporal complexity by reducing the length of test errors patterns specially for long linear block codes with high code rate ($K/N > 0.5$) and small values of d_{min} . Also the proposed algorithm OSD-HSD yields to the same or slightly less error correcting performance (less than 1 dB) compared to original OSD and better performance than other competitors for medium to long linear block codes with high code rate ($K/N > 0.5$) and large d_{min} in terms of BER. But by significant reduction in complexity in term of coding list.

Keywords: Error correcting codes; Soft Input Hard Output decoder; OSD-HSD; OSD algorithm, Chase-HSDec, SDHT.

* كلية الهندسة، جامعة مؤتة، الأردن.

تاریخ تقدیم: 2020/7/11 . تاریخ قبول البحث: 2020/10/5 .

© جميع حقوق النشر محفوظة لجامعة مؤتة، الكرك، المملكة الأردنية الهاشمية، 2021.

barley grain yield in a wide range of Mediterranean environments. *Field Crops Research*. 2011, 120(1), 169-178.

Gomez, K. & A.A. Gomez, (1984). Statistical procedures for agricultural research (2 ed.). John wiley and sons, NewYork, 680p.

Hinojosa, M., Hede, A., Rajaram, S. & Lozano del Río, J. & Valderrabano Gonzalez, A. (2002). Triticale: an alternative forage crop under rainfed conditions in Chihuahua, Mexico. *Plant Breeding and Acclimatization Institute*. 22-29.

Lorenz, K. (1974). The history, development, and utilization of triticale. *CRC Crit. Rev. in Food Tech.* 5: 175-280.

Mergoum M., Singh, P., Peña, R., Lozano-del Río, J., Cooper, K., Salmon D. & Gómez Macpherson H. (2009). Triticale: a “new” crop with old challenges. In: Carena MJ. *Cereals*. Springer. 267–286.

Moritz, O. (1933). Serologische Untersuchungen an Getreidebastarden. *Ber. Deutsch. Bot. Ges.* 52-57.

Pfeiffer, W. (1994). Triticale: potential and research status of a manmade cereal crop. In *Background material for the germplasm improvement subprogram external review*, Ciudad Obregón, Sonora, Mexico, Wheat Program. Mexico, CIMMYT. 82-92.

Rimpau, W. (1891). Kreuzungsprodukte Landwirtschaftlicher Kulturplanzen. *Landwirtschaftliche Jahrbücher*. 20: 335-371.

Simmonds. N. (1976). Evolution of crop plants. Longman, New York, p 118.

Samarah, N. (2005). Effects of drought stress on growth and yield of barley. *Agronomy for Sustainable Development*, 25(1):145-149.

SAS Institute Inc., 1996. *SAS/STAT User's Guide, version 6*, 4th edi. Vol.1 and 2 SAS Institute, Inc., Cary, NC

Savin, R. & Slafer, G. (1991). Shading effects on the yield of an Argentinian wheat cultivar. *J Agr Sci.* 1991, 116, 1–7.

Tshewang, S., Birchall, C., & Essop, R. (2010). Evaluation of the frost tolerance of triticale varieties and other winter cereals at flowering. In: Dove, H., Culvenor, R.A. (eds), *Food Security from Sustainable Agriculture*. Proc. 15th Agron. Conf. 2010, 15–18 November 2010, Lincoln, New Zealand.

Wilson, A. (1875). On wheat and rye hybrids. *Trans. Proc. Bot. Soc.* 12: 286-288.

References:

Al-Ajlouni, Z., Al-Ghzawi, A. Al-Abdallat, A. Ayad, J. Abu Elenein, J Al- Quraan, N. & Baenziger, P. (2017). Effect of Pre-Anthesis Water Deficit on Plant Height, Peduncle Length and Spike Length in 13 (*Hordeum vulgare* L.) Genotypes. *Jordan Journal of Agricultural Sciences*. 13(1), 163-173.

Al-Ajlouni, Z., Al-Abdallat, A. Al-Ghzawi, A. Ayad, J. Abu Elenein, J., Al-Quraan, N. & Baenziger, P. (2016). Impact of Pre-Anthesis Water Deficit on Yield and Yield Components in Barley (*Hordeum vulgare* L.) Plants Grown under Controlled Conditions. *Agronomy*, 6 (2) 33: 1-14.

Baye, Tesfaye M, Tilahun Abebe, & Russell A Wilke. (2011). Genotype–environment Interactions and Their Translational Implications. *Personalized medicine*. 8: 59–70.

CIMMYT. (1976). Wheat x rye = triticale. *CIMMYT Today* No. 5. Mexico, DF. 15.

Budak, N., Baenziger, K., Eskridge, D., Baltensperger, & B. Moreno-Sevilla. (1995). Plant height response of semidwarf and nonsemidwarf wheats to the environment. *Crop Sci.* 35. 447-451.

Ceccarelli, S., & Grando, S. (1996). Drought as a challenge for the plant breeder. *Plant Growth Regulation*, 20:149–155.

Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H., & Nachit, M. (2010). Plant breeding and climate changes. *Journal of Agricultural Science*, 148:1-11.

Dodig, D., Zoric, M., Jovic, M., Kandic, V., Stanisavljevic, R., & Šurlan-Momirovic, G. (2014). Wheat seedlings growth response to water deficiency and how it correlates with adult plant tolerance to drought. *The Journal of Agricultural Science*, 153(03):466-480.

Espitia-Rangel, E., P.S. Reanziger, R.A. Graybosch, D.R. Shelton, B. Moreno-Sevilla and C.J. Peterson. (1999a). Agronomic performance and stability of 1A vs. 1AL1RS genotypes derived from winter wheat 'Nekota'. *Crop Sci.* 39:643-648

Fischer, R. & Turner, N (1978). Plant productivity in the arid and semiarid zones. *Annual Review of Plant Physiol*, 29:277–317

Francia, E.; Tondelli, A.; Rizza, F.; Badeck, F.; Li Destri Nicosia, O.; Akar, T.; Grando, S.; Al-Yassin, A.; Benbelkacem, A.; Thomas, W.; van Eeuwijk, F.; Romagosa, I.; Stanca, A.; Pecchioni, N. Determinants of

Table (6) Correlation coefficients between Heading date (Day) and grain yield (kg / h) for the 10 Triticale genotypes

	Lincoln (2019) Heading date	Sidney (2019) Grain Yield
Lincoln (2019) Grain Yield	-0.80**	-0.03 ns
Sidney (2019) Grain Yield	-0.08ns	

ns, * and **: not significant and Significantly rank corrected at the 0.05 and 0.01 probability level, respectively.

Conclusions

Results of this study indicated that the early heading triticale genotypes are the best for grain yield production. Our results showed that there are diverse effects of the environments (Lincoln and Sidney, 2019) on the grain yield (kg / h) for the 10 triticale genotypes. At Sidney, the overall mean of grain yield (4997.16 kg /h), and (4330.784 kg / h) for Lincoln heading date. Overall tow environments the heist grain yield genotypes were NT14407, NT15406 and NE03T416-1 with grain yield (5372.10, 5369.70 and 5267.10 kg / h, respectively) and heading date (144.00, 143.67 and 146.67 day, respectively). In addition, the early flowering and maturing genotypes had better perform as reflected in higher yield when compared with late flowering ones. These results verified the mandatory importance of the early flowering behavior in triticale to improve productivity. Current study showed high genetic variability among the studied triticale genotypes that could be used as a rich genetic resource for breeders to develop newer Jordanian Triticale drought tolerant genotypes.

Acknowledgments

We gratefully acknowledge the Deanship of Scientific Research, Jordan University of Science and Technology for supporting my sabbatical leave (Research Number 264-2018), and small grain breeding program, University of Nebraska Lincoln. We also would like to thank the Arab fund fellowship program (Kuwait) for supporting this work.

Table (5) Ranges (means) of Heading Date (Day) and grain yield (kg / h) at each environment for the 10 Triticale genotypes

	Grand Mean	Minimum	Maximum	Range
Lincoln (2019) Heading date	145.97	143.00	151.00	8
Lincoln (2019) Grain Yield	4330.784	1396.64	6430.60	5036.96
Sidney (2019) Grain Yield	4997.159	3592.48	6206.42	2613.94
Combine Lincoln and Sidney (2019) Grain Yield	4663.971	1396.64	6430.60	5036.96

Our results revealed that, early heading triticale genotypes (NT15406 and NT14407) had higher grain yield (6144.80 and 5015.30 kg /h, respectively) than late heading genotypes (NT441 and NT15440) with grain yield (1685.10 and 4004.20 kg /h, respectively) at Lincoln 2019 (Table5). Based on the results of the correlation coefficients, heading date in Lincoln 2019 was negatively significant correlated ($P<0.01$) with grain yield in Lincoln 2019 (Table 6). Which indicated the early heading date genotype had the higher grain yield compare with the late heading date genotypes. Furthermore, no significant correlation was found between heading date Lincoln 2019 environment and Sidney 2019 grain yield. Moreover, this results might help plant breeder to select early heading triticale genotypes to cope with drought during grain filling. These findings were consistent with Al-Ajlouni et al. (2016) who studied the impact of pre-anthesis water deficit on yield and yield components in barley and Francia et al. (2011) who studied the eco-physiological performance of 118 doubled haploid population of barley in a multi-environment trial of 18 site-year combinations in six Mediterranean countries over 2 years and confirmed a strong positive correlation between water regime and yield and yield components at the level of environmental means.

Table (4) Plant height (mean (In) and rank) at Lincoln and Sidney environments (2019) for the 10 triticale genotypes

Genotype	Lincoln heading date (Day)	Lincoln grain yield (kg/h)	Sidney grain yield (kg/h)	Both Lincoln and Sidney yield (kg / h)
NT441	149.33 a	1685.10 d	4877.00 c	3281.10 d
NT15440	148.33 ab	4004.20 bc	4967.10 c	4485.70 bc
NE03T416-1	146.67 bc	4510.00 bc	6024.10 a	5267.10 a
NT14433	146.67 bc	4680.90 bc	4067.00 d	4373.90 bc
NT05421	146.67 bc	3531.20 c	4986.50 c	4258.90 c
NT15428	145.33 cd	4981.30 ab	4610.60 cd	4796.00 a-c
NT12403	144.67 cd	4592.70 bc	5277.90 bc	4935.30 ab
NT12403-1	144.33 d	4162.30 bc	4837.80 c	4500.00 bc
NT14407	144.00 d	5015.30 ab	5728.90 ab	5372.10 a
NT15406	143.67 d	6144.80 a	4594.60 cd	5369.70 a
Grand Mean	145.97	4330.78	4997.16	4663.97
Cv	0.85	16.15	7.97	12.08
LSD	2.12	1199.40	683.51	658.35
R2	0.779675	0.81	0.76	0.811

Means followed by the same letter within the column are not significantly different according to LSD test at $P \leq 0.05$.

overall 10 genotypes at Sidney was (3592.48 to 6206.42 kg / h) whereas, for Lincoln (1396.64 to 6430.60 kg /h) for the 10 triticale genotypes (Table 5). Our results indicated that, at Lincoln there is more variability among Triticale genotypes (coefficient of variation (CV) = 16.15) compare to Sidney (coefficient of variation (CV) = 7.97) (Table 4). At Sidney, the mean for grain yield (kg / h) was the highest among all the environments. Overall tow environments the highest grain yield genotypes were NT15406 at Lincoln and NE03T416-1 at Sidney with Grain yield (6144.8 and 6024.1 kg / h, respectively) (table 4). In Lincoln, the highest grain yield genotypes were (NT15406, NT14407 and NT15428) with grain yield (6144.80, 5015.30, and 4981.30) kg / h, respectively). Whereas, the lowest ranked grain yield were (NT441, and NT05421) with grain yield (1685.10 and 3531.20) kg / h, respectively) (Table 4). For Sidney the highest genotypes ranked in term of grain yield were (NT14433, and NT14407) with grain yield (6024.10, and 5728.90 kg / h, respectively), whereas, the lowest five ranked genotypes were (NT14433, NT15406, and NT15428) with plant height (4067.00, 4594.60, and 4610.60 kg / h, respectively) (Tables 4). Our results showed that there are a large variability and different response among the 10 triticale genotypes in same environment and between the two environments. As example NT15406 ranked the highest grain yield (6144.8 kg / h) and ranked (1) in Lincoln, while ranked 9 with grain yield (4594.6 kg / h) in Sidney (Table 4). Main genotype and environment interaction (G X E) effect can be anticipated when there is a large difference between genotypes in certain physiological traits showing stress resistant and/or large variation between environments for occurrence of the same stress (Francia et al. 2011).

ANOVA Sidney 2019					
Heading	Degree of freedom	Sum square	Mean Square	F Value	Pr > F
Replication	2	197742.500	98871.250		
Genotype	9	8659262.556	962140.284	6.06	0.0006
Error	18	2857780.26	158765.57		
Corrected Total	29	11714785.31			

Table (4), shows there is a significant different response of triticale genotypes to heading date. The faster flowering (Early heading) genotypes out of the 10 triticale genotypes were (NT15406, NT14404 and, and NT12403-1) with average Anthesis (143.67, 144.00, and 144.33 day, respectively) (Table 4). Whereas, the late Flowering (Late heading) triticale genotypes recorded as need more time to produce anthesis (Flowering) were (NT441, and NT15440) with heading date (149.33, and 148.33 day, respectively) (Table 4). Whereas, Other genotypes (NT12403, NT15428, NE03T416-1, NT14433, and NT05421) represent as intermediate flowering (144.67, 145.33, 146.67, 146.67, and 146.67, respectively) (Table 4). This variability in heading date will give the plant breeder to select early, moderately early, moderately late, and late triticale genotypes to cope with drought stress. The effects of water stress on the yield reduction of cereal have been well documented (Francia et al., 2011; and Al-Ajlouni et al., 2016). The plant heading date grand mean for all triticale genotypes is equal (145.97 day) and heading date range (day) is equal (8 days) (143 (Early) to 151 (Late) day) (Table 5).

Grain yield results showed that there are diverse effects of the 2 environments on the grain yield (kg / h) of the triticale 10 genotypes (Table 4 and 5). At Sidney 2019, the mean of grain yield (kg / h) for the 210 genotypes is equal to 4997.159 (kg / h) and it is equal to 4330.784 for Lincoln 2019 (Table 4 and 5), while the grain yield overall the two environments is equal to 4663.971 (kg / h). The grain yield range (kg / h)

(962140.284 and 6.06, respectively) of grain yield at Sidney 2019. This results indicated that there is more grain yield diverse among genotypes in Lincoln compare to the Sidney, which means the genotypes respond differently with different environments.

Table (3) Analysis of variance (ANOVA) for triticale grain yield (kg / h) using 10 genotypes common to the 2019 Lincoln and 2019 Sidney breeding Nurseries

Combine ANOVA (Lincoln 2019 and Sidney 2019)					
	Degree of freedom	Sum square	Mean Square	F Value	Pr > F
Replication	1	6660835.61	6660835.61		
Genotype	9	22041788.85	2449087.65	7.72	<.0001
Environment	1	6660835.61	6660835.61	20.99	<.0001
Genotype* Environment	9	23156393.89	2572932.65	8.11	<.0001
Error	38	12056775.52	317283.57		
Corrected Total	59	63916987.00			
ANOVA Lincoln 2019					
Heading	Degree of freedom	Sum square	Mean Square	F Value	Pr > F
Replication	2	202052.01	101026.00		
Genotype	9	36538920.18	4059880.02	8.30	<.0001

Combine ANOVA (Lincoln 2019 and Sidney 2019)					
	Degree of freedom	Sum square	Mean Square	F Value	Pr > F
Error	18	8800393.89	488910.77		
Corrected Total	29	45541366.08			

these finding is consistent with Tshewang et al., (2010) who find there were significant difference among triticale verities.

Table (2) Analysis of variance for triticale heading date using 10 genotypes common to the 2019 Lincoln breeding Nursery.

Heading	Degree of freedom	Sum square	Mean Square	F Value	Pr > F
Replication	2	0.47	0.23		
Genotype	9	96.97	10.77	7.04	0.0002
Error	18	27.53	1.53		
Corrected Total	29	124.97			

Analysis of variance was conducted across the 2 environments Lincoln 2019 and Sidney 2019 and each environment separately using grain yield data from 10 triticale genotypes (Table 3). Analyses of variance indicated that highly significant differences among environments and genotypes for grain yield and the genotype by environment interaction (GEI) was also significant which agreed with Budak et al., (1995). The significant GEI (combined Lincoln and Sidney 2019) indicated that the genotypes responded differently to the various environmental conditions represented by the 2 environments (Table 3). The effect of environment, genotype, and GEI terms for triticale grain yield were greatly different (Tables 3 agreed with Espitia-Rangle et al., 1999a). The environmental variance for grain yield was 2.6 times greater than the variance from the GEI. In grain yield, the environmental effect was greater than any other effect which was expected considering the diverse environments of Nebraska where the trials were grown (Table 3). The mean squares of GEI (2572932.65) was closer to the mean square of genotype (2449087.65) indicating that the genotypic effects were also more important than GEI which agreed with Budak et al., (1995). When the interaction mean squares are considerably smaller or closer than the genotype mean squares in multi-environment test, the genotype rankings are expected to be relatively consistent and the genotypic means can be described (Gomez and Gomez, 1984). Table 3, shows, the mean squares and f-value (4059880.02 and 8.30, respectively) of genotypes grain yield at Lincoln 2019 is larger than the mean square and F-value

genotype was sowed in plots with four rows with length of 2.0m and row space of 0.25m. The seeding rate was 54 kg ha⁻¹, and the planting time was from mid (beginning in western NE) to late September or early October (eastern NE). All sites were measured for plant height (described below), and other important traits for increasing yield (described below), so data from 2 breeding trials (environments) were used in this study. The following data were collected: After flowering, when the stem was fully elongated, Days to heading (days starting from 01/01/2019): was recorded number of days from emergence to the day when the awns appeared in 50% of the plot. And grain yield was measured by bound per acre (Kg/h), each plot was harvested by combine after maturity and plant is yellow.

2.3. Statistical Analysis of Field Measurements

Statistical analyses were performed using SAS software packages and procedures (SAS Institute, 1996). Analyses of variance were performed on all genotypes to determine the magnitude of the environmental (E), genotypic effects (G) and GEI using the procedures of Budak et al., (1995). Environments and blocks within environment will be considered to be random effects, while genotypes will be considered as fixed effects. In addition, to analyses of variances (ANOVA) over environments (Lincoln 2019 and Sidney 2019), we have been performed ANOVA in each environment to identify the significant differences among genotypes for the individual traits. Variance components for environment, genotype, and GEI will be calculated using expected mean squares obtained from the random statement in PROC Mixed (SAS Institute, 1996). Post-test analysis (Least significant difference, LSD) was used to test the performance of each genotype for each trait. To determine the relationship between yield and plant heading date a simple correlation between yield and plant heading date was computed from genotypes means for these traits within environments.

3. Results and Discussions

The flowering behavior of all 10 triticale genotypes had significantly difference heading time responses. Analysis of variance (Table 2) showed significant genotypic differences ($P<0.0002$) with f-value (7.04) and mean square (10.77). This shows that the triticale genotypes produce flower faster than other genotypes. In temperate cereals, flowering relies primarily on environmental cues such as photoperiod and verbalization to flower at the proper time of the year to maximize their reproductive success. Genotypic differences (significant at $P<0.01$) were found in heading date (Table 2)

Table (1) Names and pedigree of 10 triticale genotypes used in this study

Genotype	Pedigree
NT14433	Haiduc/NE426GT//NT06427
NT441	TRICAL//OAC-85-21/NE88T442
NT15440	NT07438/NE422T
NT05421	NE92T422 COMPLEX
NT12403	NT05429=(NE98T425 (=PRESTO/NE91T409)/TX95VT7318 (=PRESTO//FS1795/LNC"S"))/NT02458=(RAH-123/NE90T413 (=COMPLEX, FAIN ETC.)?CTM86.101/GWT 88-12)
NT15406	Gorum/NE422T//NT08421
NT12403-1	NT05429=(NE98T425 (=PRESTO/NE91T409)/TX95VT7318 (=PRESTO//FS1795/LNC"S"))/NT02458=(RAH-123/NE90T413 (=COMPLEX, FAIN ETC.)?CTM86.101/GWT 88-12)
NT15428	NT07403/NT01451
NE03416-1	NA
NT14407	NCPT01-1433/NT05433/NT07403

2.2. Locations (Environments), Experiments and data collection

The field trials were conducted at Two locations in Nebraska (USA) with different rainfall amounts. The first location is the field site of Sidney (drought area with low rainfall). The second location is the field site Lincoln (high rainfall) (Havelock Experiment Station Farm). Growing conditions included timely planting into generally good soil moisture leading good fall stands and growth. The fields were planted on time for their respective eco-geographic zones and fertilizer was generally applied before planting. In general, diseases were moderate throughout Nebraska. Fungicides were frequently used as a preventative measure against fungal diseases. Triticale genotypes, including elite, historical, and experimental genotypes have been used in this study. All genotypes were grown in two different locations in Nebraska under rain-fed conditions using recommended cultural practices and randomized complete block designs with four replications. Each

triticale yields equivalent to, or better than, those for wheat (Briggle, 1969; Lorenz, 1974). In the beginning, several major hurdles had to be overcome to triticale to become a viable crop. Early triticales, though vigorous in growth habit, were extremely late, very tall, highly sterile, day-length sensitive and had shriveled seeds (CIMMYT, 1976). But, now though a newly cultivated crop, triticale is rapidly expanding in several production systems (Pfeiffer, 1994; Hinojosa et al., 2002). Its ability to produce higher biomass and grain yield compared with other cereals over a wide range of soil and climatic conditions has enhanced its adoption in more than 30 countries. If soil moisture is too little at sowing time, which is the case in rainfed arid and semi-arid environments, this will result in poor germination and seedling establishment, poor tillering and hence, smaller number of plants per unit area and lesser growth potential (Dodig, et al., 2014). Additionally, drought at the period of stem elongation (pre-anthesis) causes reduction in number of grains per unit area due to its harmful effect on floret fertility (Fischer & Turner, 1978; Dodig, et al., 2014; Al Ajlouni et al., 2016 and 2017). Jordan is potentially very subjected to future changes in climate, which will possibly cause an increase in frequent drought stress, which will consequently affect barley production (Samarah, 2005; Ceccarelli, et al., 2010; Al Ajlouni et al., 2016 and 2017). Therefore, the objective of this study was to understand the importance of different heading date time (early and late) on triticale genotypes and its impact on grain yield.

2. Materials and Methods

2.1. Plant material:

Ten lines different triticale genotypes originating from different crosses were used in the present study (Table 1).

1. Introduction

In Jordan, yield damages occurred due to unequal distribution or low of precipitation during the whole plant growth cycle (Ceccarelli and Grando, 1996). In other words, drought might happen during pre-flowering as well as post flowering period. Few reports in the literature discuss the effect of time of heading on grain yield on triticale production. Triticale (X *Triticosecale* Wittmack) is becoming increasingly important in agriculture and understanding its genetic diversity is essential for its continued improvement. The plant phenotype is a mixture of gene and environmental effects and the interaction between both of them (Baye et al., 2011). The first successful human-made of cereal crop was produced in 1875, by crossing wheat (*Triticum*) and rye (*Secale*) to produced triticale (*Triticosecale* Wittmack) (Pfeiffer, 1994; Hinojosa et al., 2002). Triticales are the fertile, true-breeding progenies of an intergeneric hybridization, followed by chromosome doubling, between a seed parent from the genus *Triticum* and a pollen parent from the genus *Secale* (Rimpau, 1891). Simmonds (1976) summarized the various types of triticale that can be synthesized with different chromosomal constitutions. Crossing with different species of wheat, *Triticum turgidum* (AABB) or *Triticum aestivum* (AABBDD) will produce either hexaploid (AABBRR) or octoploid (AABBDDRR) triticale, respectively. Among the various types of triticale, hexaploid triticale (durum \times rye) has been the most successful because of its superior vigor and reproductive stability. The octoploid type (common wheat \times rye) suffers greater genetic instability and associated floret sterility (Mergoum et al. 2009). Triticale should combine the best characteristics of both parents: wheat's and rye's: yield potential and grain quality of wheat with the disease and environmental tolerance (difficult soil conditions, drought tolerance, cold hardiness, disease resistance and low-input requirements) of rye (Wilson, 1875). Triticale is grown primarily as a feed grain and as a substantial silage crop because its dough lacks the strength for making bread unless mixed with wheat flour. Current triticale varieties do not possess the grain, milling and flour characteristics of the wheat used in bread and pasta products. As a result, triticale grain is fed to poultry, cattle and other livestock (Moritz, 1933). The ranged of protein content of triticale from 10 to 20 percent on a dry weight basis, which is higher than wheat. The amino acid composition of the protein is similar to wheat. The

تأثير موعد التزهير على انتاج الحبوب لنبات التريتيكالي (X Triticosecale Wittmack)

ذكرى العجلوني

ابراهيم البسيوني

فيكاس بيلاماك

ستيف بير بينزير

ملخص

أجريت هذه الدراسة على 10 أصناف واعدة من نبات التريتيكالي (X Triticosecale Wittmack) وزرعت هذه الاصناف باستخدام 3 مكرارات وزعت عشوائيا على كل قطاع لدراسة تأثير وقت التزهير على الانتاج (الغله). بينت هذه الدراسة بأن الازهار المبكر يعطي انتاج حبوب أفضل، مثلا الصنف الوعاد NT15406 المبكر التزهير (143 يوم) أنتج أعلى غله من الحبوب في لينكولن (6144.8 كجم / هكتار). وقد لوحظت اختلافات كبيرة بين الاصناف الوعادة فيما يتعلق بتاريخ الازهار والانتاج. أوضحت النتائج بأنه يوجد اختلافات بين الاصناف الوعادة من حيث انتاج الحبوب. في سيدني، المتوسط العام لمجموع الاصناف الوعادة لإنتاج الحبوب (4997.16 كجم / هكتار)، و (4330.784 كجم / هكتار) للينكولن. بشكل عام، خلال البيئتين (لينكولن وسيدني) كانت الاصناف الوعادة NT15406 و NT14407 و NT14407 (NE03T416-1) أعلى انتاج (5369.7 و 5372.1 و 5267.1 كجم / هكتار على التوالي). في حين أن الصنف الوعاد NE03T416-1 حق أعلى انتاج (6024.1 كجم / هكتار) بينما الصنف الوعاد NT15406 أعلى انتاج (6144.8 كجم / هكتار) في موقع لينكولن. اظهرت هذه الدراسة اختلافات انماط جينية عالية للصفات المدروسة لنبات التريتيكالي في تحسين الأصناف الأردنية المحلية التي تحمل الجفاف.

الكلمات الدالة: الجفاف، تريتيكالي، تزهير، الانتاج، انتخاب.

Heading date effect on winter Triticale (X Triticosecale Witttmack) grain yield production

Zakaria Al-Ajlouni^{*}

Ibrahim Elbasyoni^{}**

Vikas Belamkar^{*}**

Stephen Baenziger

Abstract

A total of 10 Triticale genotypes were grown in a Randomized Complete Block Design using 3 replications to improve our understanding the importance of different heading date time (early and late) on triticale genotypes and its impact on grain yield. Results of this study indicated that the early heading triticale genotypes are the best for grain yield production as example NT15406 genotype heading early (143 day) and produce the highest grain yield in Lincoln (6144.8 kg / h). Significant differences were observed among genotypes regarding Heading date and grain yield. Results indicated diverse effect of the different environments overall genotypes on the grain yield. At Sidney, the overall mean of grain yield (4997.16 kg / h), and (4330.784 kg / h) for Lincoln. Overall tow environments the highest grain yield genotypes were NT14407, NT15406 and NE03T416-1 with grain yield (5372.1, 5369.7 and 5267.1 kg / h, respectively). Whereas, for grain yield, overall tow environments the highest significant grain yield genotypes were NE03T416-1 at Sidney and NT15406 at Lincoln with Grain yield (6024.1 and 6144.8 kg / h, respectively). Current study showed high genetic variability among the studied triticale genotypes that could be used as a rich genetic resource for breeders to develop newer Jordanian Triticale drought tolerant genotypes.

Keywords: Drought, Triticale, flowering, grain yield, selection

* قسم الانتاج النباتي، كلية الزراعة، جامعة العلوم والتكنولوجيا الأردنية، اربد-الأردن.

** قسم علم المحاصيل، كلية الزراعة، جامعة منهور، مصر.

*** قسم المحاصيل والبستنة، جامعة نبراسكا الامريكية، نبراسكا، أمريكا.

تاریخ قبول البحث: 2020/8/16. تاریخ تقديم: 2020/7/20.

© جميع حقوق النشر محفوظة لجامعة مؤتة، الكرك، المملكة الأردنية الهاشمية، 2021 م.

Muslih, S., Agrawal, O. & Baleanu, D. (2010). A fractional Dirac equation and its solution, *Journal of Physics A: Mathematical and Theoretical*, 43,055203.

Nasrolahpour, H. (2013). Fractional Lagrangian and Hamiltonian Formulations in Field Theory, *Prespacetime Journal*, 4(6), 604-608.

Oldham, B. & Spanier, J. (1974). *The Fractional Calculus*, New York: Academic Press.

Podlubny, I. (1999). *Fractional Differential Equations*, Academic Press: New York.

Rabei, E., Nawafleh, K., Hijjawi, R. & Muslih, S.(2007a). The Hamiltonian Formalism with Fractional Derivatives, *Journal of Mathematical Analysis and Applied*. 327, pp. 891–897.

Rabei, E., Tarawneh, D., Muslih, S. & Baleanu, D. (2007b). Heisenberg's Equation of Motion with Fractional derivatives, *Journal of vibration and Control*, 13,1239.

Tarasov, V. (2013). Review of some promising fractional physical models, *Int. J. Mod. Phys. A*, 27(9), 1330005.

Tong, D. (2006 - 2007). *Quantum Field Theory*. (Michaelmas Term). Cambridge, CB3 OWA, UK.

References:

Agrawal, O. (2012). Generalized Multi parameters Fractional Variational Calculus, International Journal of Differential Equations, Volume 2012, Article ID 521750.

Baleanu, D. & Muslih, S. (2005). Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, *Physica Scripta*, 72, 119.

Dirac, P. (1964). Lectures on Quantum Mechanics, Yeshiva University, New York.

El-Nabulsi, A. (2013). Fractional derivatives generalization of Einstein's field equations, *Indian J. Phys.*, 87(2), 195-200.

Eriksen, E. & Lienaaas, J. (1980). Gauge Invariance and the Transformation Properties of the Electromagnetic Four- Potential, *Physica Scripta*, 22, 199-202.

Goldfain, E. (2012). Fractional Field Theory and Physics Beyond the Standard Model, *Prespace time Journal*, 3 (5), 435-458.

Gray, R. & Kobe, D. (1982), Gauge-invariant canonical quantization of the electromagnetic field and duality transformations, *J. Phys. A: Math. Gen.* 15, 3145-3155.

Hilfer, R. (2000). Applications of Fractional Calculus in Physics. Singapore: World Scientific.

Jaradat, E. (2013). Canonical Quantization for Fractional Schrödinger Lagrangian Density in Caputo Definition, *Jordan Journal of Physics*, 6(2), 55-63.

Laskin, N. (2002a). Fractional Schrödinger equation, *Physical Review E*, 66(5), 056108–056115.

Lim, S. & Muniady, S. (2004), Stochastic quantization of nonlocal fields, *Physics Letters A*, 324(5–6), 396–405.

Miller, K. & Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equation. New York: McGraw-Hill.

Muslih, S. & Baleanu, D. (2005b). Quantization of classical fields with fractional derivatives. *Nuovo Cimento*, 120, 507–512.

$${}_{+}^c\partial_t^{2\alpha} \psi^* + {}_{+}^c\partial_{x_i}^{2\alpha} \psi^* + M^2 \psi^* + g \psi^* \phi = 0 \quad (51)$$

In the same manner the fractional Heisenberg equations for the other field ψ^* are:

$${}_{+}^c\partial_t^{\alpha} \psi^*(t, x) = \pi_{\alpha\psi}(t, x) \quad (52)$$

$${}_{+}^c\partial_t^{2\alpha} \psi + {}_{+}^c\partial_{x_i}^{2\alpha} \psi + M^2 \psi + g \psi^* \phi = 0 \quad (53)$$

For $\alpha = 1$, Eqs. (35), (51) and (53) reduced to the usual equations of classical fields with $g\psi^*\psi\phi$ interaction.

5. Conclusion

The fractional variational principle represents an important part of fractional calculus and has found many applications in physics. As it is mentioned by Agrawal (Agrawal, 2012) there are different kinds of fractional variational calculus and fractional Euler-Lagrange equations due to the fact that we have several definitions for the fractional derivatives. In this paper we have extended the derivation of the usual Euler-Lagrange equations of motion for classical fields to the case that the Lagrangian contains fractional derivatives of fields with interaction. In addition, we obtained the fractional Hamiltonian density for scalar field with interaction. The commutation relations and fractional Heisenberg equations of motion have been constructed for scalar Yukawa interaction system. In special cases, when the derivatives are of order ($\alpha \rightarrow 1$), the method presented here and the resulting equations of motion are very similar to those obtained for classical fields.

The other fractional Heisenberg equation for the field ψ is

$${}^c\partial_t^\alpha \pi_{\alpha\psi}(t, x) = i[\hat{H}, \hat{\pi}_{\alpha\psi}] \quad (44)$$

Substituting the quantity of Hamiltonian density in Eq. (44), we get

$$\begin{aligned} {}^c\partial_t^\alpha \hat{\pi}_{\alpha\psi}(t, x) &= i \int d^3x \left[\left(\frac{1}{2} \pi_{\alpha\phi}^2 + \pi_{\alpha\psi} \pi_{\alpha\psi}^* + ({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi) + \right. \right. \\ &\quad \left. \left. \frac{1}{2} ({}^c\partial_{x_i}^\alpha \phi) ({}^c\partial_{x_i}^\alpha \phi) + M^2 \psi^* \psi + \frac{1}{2} m^2 \phi \phi^2 + g \psi^* \psi \phi \right), \hat{\pi}_{\alpha\psi} \right] \end{aligned} \quad (45)$$

Rearranging the last equation, we get

$$\begin{aligned} {}^c\partial_t^\alpha \hat{\pi}_{\alpha\psi}(t, x) &= i \int d^3x \left\{ \frac{1}{2} \left[\pi_{\alpha\phi}^2, \hat{\pi}_{\alpha\psi} \right] + \left[\pi_{\alpha\psi} \pi_{\alpha\psi}^*, \hat{\pi}_{\alpha\psi} \right] \right. \\ &\quad + \left[({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi), \hat{\pi}_{\alpha\psi} \right] + \frac{1}{2} \left[({}^c\partial_{x_i}^\alpha \phi) ({}^c\partial_{x_i}^\alpha \phi), \hat{\pi}_{\alpha\psi} \right] \\ &\quad \left. + \left[M^2 \psi^* \psi, \hat{\pi}_{\alpha\psi} \right] + \frac{1}{2} \left[m^2 \phi^2, \hat{\pi}_{\alpha\psi} \right] + \left[g \psi^* \psi \phi, \hat{\pi}_{\alpha\psi} \right] \right\} \end{aligned} \quad (46)$$

Using the properties of canonical commutation relations, then Eq. (46) takes the forms respectively as in Eqs. (47) and (48).

$$\begin{aligned} {}^c\partial_t^\alpha \hat{\pi}_{\alpha\psi}(t, x) &= i \int d^3x \left\{ \left[({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi), \hat{\pi}_{\alpha\psi} \right] + \left[M^2 \psi^* \psi, \hat{\pi}_{\alpha\psi} \right] \right. \\ &\quad \left. + \left[g \psi^* \psi \phi, \hat{\pi}_{\alpha\psi} \right] \right\} \end{aligned} \quad (47)$$

$${}^c\partial_t^\alpha \hat{\pi}_{\alpha\psi}(t, x) = i \int d^3x \left\{ \begin{array}{c} {}^c\partial_{x_i}^\alpha \psi^* {}^c\partial_{x_i}^\alpha i \delta^3(x - \dot{x}) + M^2 \psi^* i \delta^3(x - \dot{x}) + \\ g \psi^* \phi i \delta^3(x - \dot{x}) \end{array} \right\} \quad (48)$$

Using Delta-function properties, Eq. (48) becomes

$${}^c\partial_t^\alpha \hat{\pi}_{\alpha\psi}(t, x) = -{}^c\partial_{x_i}^{2\alpha} \psi^* - M^2 \psi^* - g \psi^* \phi \quad (49)$$

Since $\pi_{\alpha\psi}(t, x) = {}^c\partial_t^\alpha \psi^*(t, x)$,

Then

$${}^c\partial_t^\alpha {}^c\partial_t^\alpha \psi^* = -{}^c\partial_{x_i}^{2\alpha} \psi^* - M^2 \psi^* - g \psi^* \phi \quad (50)$$

Rearrangement the last equation, we get

The first fractional Heisenberg equation for the field ψ is:

$${}^c\partial_t^\alpha \psi(t, x) = i[\hat{H}, \hat{\psi}] \quad (37)$$

Replace by \mathcal{H} in Eq. (20), we get

$$\begin{aligned} {}^c\partial_t^\alpha \psi(t, x) = i \int d^3x & \left[\left(\frac{1}{2} \pi_{\alpha_\phi}^2 + \pi_{\alpha_\psi} \pi_{\alpha_\psi^*} + ({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi) \right. \right. \\ & \left. \left. + \frac{1}{2} ({}^c\partial_{x_i}^\alpha \phi) ({}^c\partial_{x_i}^\alpha \phi) + M^2 \psi^* \psi + \frac{1}{2} m^{2\alpha} \phi^2 + g \psi^* \psi \phi \right), \hat{\psi} \right] \end{aligned} \quad (38)$$

Rearranging the last equation, we get

$$\begin{aligned} {}^c\partial_t^\alpha \psi(t, x) = i \int d^3x & \left\{ \frac{1}{2} \left[\pi_{\alpha_\phi}^2, \hat{\psi} \right] + \left[\pi_{\alpha_\psi} \pi_{\alpha_\psi^*}, \hat{\psi} \right] + \left[({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi), \hat{\psi} \right] \right. \\ & + \frac{1}{2} \left[({}^c\partial_{x_i}^\alpha \phi) ({}^c\partial_{x_i}^\alpha \phi), \hat{\psi} \right] + \left[M^2 \psi^* \psi, \hat{\psi} \right] + \frac{1}{2} \left[m^{2\alpha} \phi^2, \hat{\psi} \right] \\ & \left. + [g \psi^* \psi \phi, \hat{\psi}] \right\} \end{aligned} \quad (39)$$

Using the properties of canonical commutation relations, then Eq. (39) takes the forms respectively as in Eqs. (40), (41) and (42).

$${}^c\partial_t^\alpha \psi(t, x) = i \int d^3x \left[\pi_{\alpha_\psi} \pi_{\alpha_\psi^*}, \hat{\psi} \right] \quad (40)$$

$${}^c\partial_t^\alpha \psi(t, x) = i \int d^3x \left\{ \pi_{\alpha_\psi} \left[\pi_{\alpha_\psi^*}, \hat{\psi} \right] + \left[\pi_{\alpha_\psi}, \hat{\psi} \right] \pi_{\alpha_\psi^*} \right\} \quad (41)$$

$${}^c\partial_t^\alpha \psi(t, x) = i \int d^3x \left\{ \pi_{\alpha_\psi^*}(t, x) (-i) \delta^3(x - \dot{x}) \right\} \quad (42)$$

$${}^c\partial_t^\alpha \psi(t, x) = \pi_{\alpha_\psi^*}(t, x) \quad (43)$$

$$\begin{aligned} {}_t^c\partial_t^\alpha \hat{\pi}_{\alpha\phi}(t, x) &= i \int d^3x \left\{ \frac{1}{2} \left[\left({}_x^c\partial_{x_i}^\alpha \phi \right)^2, \hat{\pi}_{\alpha\phi} \right] + \frac{m^{2\alpha}}{2} \left[\phi^2, \hat{\pi}_{\alpha\phi} \right] \right. \\ &\quad \left. + g \left[\psi^* \psi \phi, \hat{\pi}_{\alpha\phi} \right] \right\} \end{aligned} \quad (31)$$

$${}_t^c\partial_t^\alpha \hat{\pi}_{\alpha\phi}(t, x) = i \int d^3x \left\{ \begin{array}{l} {}_x^c\partial_{x_i}^\alpha \phi {}_x^c\partial_{x_i}^\alpha i\delta^3(x - \dot{x}) + m^{2\alpha} \phi i\delta^3(x - \dot{x}) + \\ g\psi^* \psi i\delta^3(x - \dot{x}) \end{array} \right\} \quad (32)$$

Using Delta-function properties, Eq. (32) becomes

$${}_t^c\partial_t^\alpha \hat{\pi}_{\alpha\phi}(t, x) = -({}_x^c\partial_{x_i}^\alpha \phi)^2 - m^{2\alpha} \phi - g\psi^* \psi \quad (33)$$

Since $\pi_{\alpha\phi} = {}_t^c\partial_t^\alpha \phi$,

Then

$${}_t^c\partial_t^{2\alpha} \phi = -({}_x^c\partial_{x_i}^\alpha \phi)^2 - m^{2\alpha} \phi - g\psi^* \psi \quad (34)$$

Rearrangement the last equation, we get

$${}_t^c\partial_t^{2\alpha} \phi + ({}_x^c\partial_{x_i}^\alpha \phi)^2 + m^{2\alpha} \phi + g\psi^* \psi = 0 \quad (35)$$

This can be written as

$$(D + m^{2\alpha})\phi + g\psi^* \psi = 0 \quad (36)$$

where D is the D'Almbertian operator.

Now we want to obtain the fractional Heisenberg equations for the other field variables ψ and ψ^* .

$${}^c\partial_t^\alpha \phi(t, x) = i \int d^3x \left\{ \pi_{\alpha_\phi}(t, x) (-i) \delta^3(x - \dot{x}) \right\} \quad (26)$$

Using Delta-function properties, we get the first fractional Heisenberg equation

$${}^c\partial_t^\alpha \phi(t, x) = \pi_{\alpha_\phi}(t, x) \quad (27)$$

The other fractional Heisenberg equation for the scalar field ϕ can be written as

$${}^c\partial_t^\alpha \pi_{\alpha_\phi}(t, x) = i [\tilde{H}, \hat{\pi}_{\alpha_\phi}] \quad (28)$$

Replace by \mathcal{H} in Eq. (20), we get

$$\begin{aligned} {}^c\partial_t^\alpha \hat{\pi}_{\alpha_\phi}(t, x) &= i \int d^3x \left[\left(\frac{1}{2} \pi_{\alpha_\phi}^2 + \pi_{\alpha_\psi} \pi_{\alpha_\psi^*} + ({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi) \right. \right. \\ &\quad \left. \left. + \frac{1}{2} ({}^c\partial_{x_i}^\alpha \phi)^2 + M^2 \psi^* \psi + \frac{1}{2} m^{2\alpha} \phi^2 + g \psi^* \psi \phi \right), \hat{\pi}_{\alpha_\phi} \right] \end{aligned} \quad (29)$$

Rearranging the last equation, we get

$$\begin{aligned} {}^c\partial_t^\alpha \hat{\pi}_{\alpha_\phi}(t, x) &= i \int d^3x \left\{ \frac{1}{2} \left[\pi_{\alpha_\phi}^2, \hat{\pi}_{\alpha_\phi} \right] + \left[\pi_{\alpha_\psi} \pi_{\alpha_\psi^*}, \hat{\pi}_{\alpha_\phi} \right] \right. \\ &\quad + \left[({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi), \hat{\pi}_{\alpha_\phi} \right] + \frac{1}{2} \left[({}^c\partial_{x_i}^\alpha \phi)^2, \hat{\pi}_{\alpha_\phi} \right] \\ &\quad \left. + \left[M^2 \psi^* \psi, \hat{\pi}_{\alpha_\phi} \right] + \frac{m^{2\alpha}}{2} \left[\phi^2, \hat{\pi}_{\alpha_\phi} \right] + g \left[\psi^* \psi \phi, \hat{\pi}_{\alpha_\phi} \right] \right\} \end{aligned} \quad (30)$$

Using the properties of canonical commutation relations, then Eq. (30) takes the forms respectively as in Eqs. (31) and (32).

$$\mathcal{H} = \frac{1}{2} \pi_{\alpha\phi}^2 + \pi_{\alpha\psi} \pi_{\alpha\psi^*} + ({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi) + \frac{1}{2} ({}^c\partial_{x_i}^\alpha \phi) ({}^c\partial_{x_i}^\alpha \phi) + M^2 \psi^* \psi + \frac{1}{2} m^{2\alpha} \phi^2 + g \psi^* \psi \phi \quad (20)$$

For $\alpha \rightarrow 1$, the above equation gives the usual Hamiltonian density for classical fields.

The first fractional Heisenberg equation for the scalar field ϕ is:

$${}^c\partial_t^\alpha \phi(t, x) = i [\tilde{H}, \hat{\phi}], \text{ where } H = \int d^3x \tilde{\mathcal{H}} \quad (21)$$

Substituting the quantity of Hamiltonian density in Eq. (21)

$${}^c\partial_t^\alpha \phi(t, x) = i \int d^3x \left[\left(\frac{1}{2} \pi_{\alpha\phi}^2 + \pi_{\alpha\psi} \pi_{\alpha\psi^*} + ({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi) + \frac{1}{2} ({}^c\partial_{x_i}^\alpha \phi) ({}^c\partial_{x_i}^\alpha \phi) + M^2 \psi^* \psi + \frac{1}{2} m^{2\alpha} \phi^2 + g \psi^* \psi \phi \right), \hat{\phi} \right] \quad (22)$$

Rearranging the last equation, we get

$${}^c\partial_t^\alpha \phi(t, x) = i \int d^3x \left\{ \frac{1}{2} [\pi_{\alpha\phi}^2, \hat{\phi}] + [\pi_{\alpha\psi} \pi_{\alpha\psi^*}, \hat{\phi}] + [({}^c\partial_{x_i}^\alpha \psi^*) ({}^c\partial_{x_i}^\alpha \psi), \hat{\phi}] + \frac{1}{2} [({}^c\partial_{x_i}^\alpha \phi)^2, \hat{\phi}] + [M^2 \psi^* \psi, \hat{\phi}] + \frac{m^{2\alpha}}{2} [\phi^2, \hat{\phi}] + g [\psi^* \psi \phi, \hat{\phi}] \right\} \quad (23)$$

Since the last six terms vanish, then

$${}^c\partial_t^\alpha \phi(t, x) = i \int d^3x \frac{1}{2} [\pi_{\alpha\phi}^2(t, x), \hat{\phi}(t, x)] \quad (24)$$

Using the properties of canonical commutation relations, then Eq. (24) takes the forms respectively as in Eqs. (25) and (26).

$$\begin{aligned} {}^c\partial_t^\alpha \phi(t, x) &= \frac{i}{2} \int d^3x \left\{ \pi_{\alpha\phi}(t, x) [\pi_{\alpha\phi}(t, x), \hat{\phi}(t, x)] \right. \\ &\quad \left. + [\pi_{\alpha\phi}(t, x), \hat{\phi}(t, x)] \pi_{\alpha\phi}(t, x) \right\} \end{aligned} \quad (25)$$

$$-M^2\psi^* - g\psi^*\phi + \sum_{\mu=1}^n -\partial_{\mu}^{\alpha} \frac{\partial \mathcal{L}}{\partial ({}^c \partial_{\mu}^{\alpha} \psi)} = 0 \quad (14)$$

where

$$\frac{\partial \mathcal{L}}{\partial \psi} = -M^2\psi^* - g\psi^*\phi \quad (15)$$

$$\sum_{k=1}^n -\partial_k^{\alpha} \frac{\partial \mathcal{L}}{\partial ({}^c \partial_k^{\alpha} \psi)} + \sum_{k=1}^n +\partial_k^{\beta} \frac{\partial \mathcal{L}}{\partial ({}^c \partial_k^{\beta} \psi)} = \sum_{\mu=1}^n -\partial_{\mu}^{\alpha} \frac{\partial \mathcal{L}}{\partial ({}^c \partial_{\mu}^{\alpha} \psi)} \quad (16)$$

If we restrict ourselves to space and time dimensions

$$-M^2\psi^* - g\psi^*\phi + -\partial_t^{\alpha} ({}^c \partial_t^{\alpha} \psi^*) + -\partial_{x_i}^{\alpha} ({}^c \partial_{x_i}^{\alpha} \psi^*) = 0 \quad (17)$$

For the other field ψ^* the fractional equation can be obtained as

$$-M^2\psi - g\psi\phi + -\partial_t^{\alpha} ({}^c \partial_t^{\alpha} \psi) + -\partial_{x_i}^{\alpha} ({}^c \partial_{x_i}^{\alpha} \psi) = 0 \quad (18)$$

If α goes to 1, Eqs. (13), (17) and (18) go to the usual Euler-Lagrange equations for the classical fields.

4. Fractional Heisenberg Equations for Scalar Yukawa Interaction

Canonical quantization is the procedure by which a classical theory, formulated by use of the Lagrangian-Hamiltonian formalism, can be made into a quantum theory. In quantum field theory we usually work in the Heisenberg picture, where the fields carry the time dependence. The field is quantized by constructing the equal time canonical commutation relations CCRs. The field and its conjugate momentum become operators obeying the Heisenberg equations. The kronecker delta on a right side becomes a 3-d Dirac delta function for the case of continuous field.

Now we want to construct the Hamiltonian formulation for scalar Yukawa interaction to find the fractional Heisenberg equations. Using Eq. (7) the fractional canonical momenta densities are calculated as:

$$\begin{aligned} \pi_{\alpha\phi} &= \frac{\partial \mathcal{L}}{\partial ({}^c \partial_t^{\alpha} \phi)} = {}^c \partial_t^{\alpha} \phi, & \pi_{\alpha\psi} &= \frac{\partial \mathcal{L}}{\partial ({}^c \partial_t^{\alpha} \psi)} = {}^c \partial_t^{\alpha} \psi^*, \\ \pi_{\alpha\psi^*} &= \frac{\partial \mathcal{L}}{\partial ({}^c \partial_t^{\alpha} \psi^*)} = {}^c \partial_t^{\alpha} \psi \end{aligned} \quad (19)$$

Using the fractional canonical momenta densities $\pi_{\alpha\phi}$, $\pi_{\alpha\psi}$, $\pi_{\alpha\psi^*}$, then the Hamiltonian density becomes as:

3. Fractional Euler-Lagrange Equations for Scalar Yukawa Interaction

Fractional Lagrangian densities are functions of fractional fields and their derivatives. In this section we apply the fractional Euler-Lagrange equation to obtain fractional scalar Yukawa equations in a d-dimensional space-time.

The most general form of the scalar Yukawa interaction is given by the Lagrangian density (Tong, 2006 - 2007)

$$\mathcal{L} = ({}^c\partial_k^\alpha \psi^*) ({}^c\partial_k^\alpha \psi) + \frac{1}{2} ({}^c\partial_k^\alpha \phi) ({}^c\partial_k^\alpha \phi) - M^2 \psi^* \psi - \frac{1}{2} m^{2\alpha} \phi^2 - g \psi^* \psi \phi \quad (9)$$

with $g \ll M, m$. This interaction couples a complex scalar field ψ to a real scalar field ϕ of the type ($\mathcal{L} = -g \psi^* \psi \phi$), where g is the (real) coupling constant. This interaction is derived from the Lagrangian density of a system of a Dirac field and a Klein-Gordon (KG) field. The last term of (9) represents the interaction.

Using the fractional Euler Lagrange equation (6) to obtain the equations of motion for the field variables ϕ , ψ and ψ^* .

Take the first field variable ϕ , the corresponding equations of motion are

$$-m^{2\alpha} \phi - g \psi^* \psi + \sum_{\mu=1}^n -\partial_\mu^\alpha \frac{\partial \mathcal{L}}{\partial ({}^c\partial_\mu^\alpha \phi)} = 0 \quad (10)$$

where

$$\frac{\partial \mathcal{L}}{\partial \phi} = -m^{2\alpha} \phi - g \psi^* \psi \quad (11)$$

$$\sum_{k=1}^n -\partial_k^\alpha \frac{\partial \mathcal{L}}{\partial ({}^c\partial_k^\alpha \phi)} + \sum_{k=1}^n +\partial_k^\beta \frac{\partial \mathcal{L}}{\partial ({}^c\partial_k^\beta \phi)} = \sum_{\mu=1}^n -\partial_\mu^\alpha \frac{\partial \mathcal{L}}{\partial ({}^c\partial_\mu^\alpha \phi)} \quad (12)$$

If we restrict ourselves to space and time dimensions

$$-m^{2\alpha} \phi - g \psi^* \psi + -\partial_t^\alpha ({}^c\partial_t^\alpha \phi) + -\partial_{x_i}^\alpha ({}^c\partial_{x_i}^\alpha \phi) = 0 \quad (13)$$

Now use the general formula Eq. (6) to obtain other equations of motion for the other field variable ψ

Where $\partial_{x_k}(g)$ is the partial derivative of g with respect to the variable x_k . Here, in ${}_{+}\partial_k^{\alpha}$, ${}_{-}\partial_k^{\alpha}$, ${}_{+}^c\partial_k^{\alpha}$, ${}_{-}^c\partial_k^{\alpha}$, the subscript k and superscript α indicate that the derivative is taken with respect to the variable x_k and it is of the order α_k , the subscript $+$ and $-$ prior to the symbol ∂ represent the left and the right fractional derivatives, respectively.

The fractional variational principle and the Euler-Lagrange equation for field system described in terms of fractional derivatives presented in by use of a functional $S(\phi)$ as in (Muslih *et al.*, 2010).

$$S(\phi) = \int \mathcal{L}[\phi(x_k), ({}_{+}^c\partial_k^{\alpha})\phi(x_k), ({}_{-}^c\partial_k^{\alpha})\phi(x_k), x_k] dx_k \quad (5)$$

where

$\mathcal{L}[\phi(x_k), ({}_{+}^c\partial_k^{\alpha})\phi(x_k), ({}_{-}^c\partial_k^{\alpha})\phi(x_k), x_k]$ is a Lagrangian density function.

Form this action function the fractional Euler-Lagrange equation given as:

$$\frac{\partial \mathcal{L}}{\partial \phi} + \sum_{k=1}^n -\partial_k^{\alpha} \frac{\partial \mathcal{L}}{\partial ({}_{+}^c\partial_k^{\alpha} \phi)} + \sum_{k=1}^n +\partial_k^{\beta} \frac{\partial \mathcal{L}}{\partial ({}_{-}^c\partial_k^{\beta} \phi)} = 0 \quad (6)$$

For $\alpha = \beta = 1$, the last equation reduces to the usual Euler-Lagrange for classical fields.

The fractional canonical momentum densities π_{α_k} and π_{β_k} defined as:

$$\pi_{\alpha_k} = \frac{\partial \mathcal{L}}{\partial ({}_{+}^c\partial_k^{\alpha} \phi)} \quad \text{and} \quad \pi_{\beta_k} = \frac{\partial \mathcal{L}}{\partial ({}_{-}^c\partial_k^{\beta} \phi)} \quad (7)$$

The fractional Hamiltonian density defined as:

$$\mathcal{H} = \sum_{k=1}^n \pi_{\alpha_k} ({}_{+}^c\partial_k^{\alpha} \phi) + \sum_{k=1}^n \pi_{\beta_k} ({}_{-}^c\partial_k^{\beta} \phi) - \mathcal{L} \quad (8)$$

with interaction and compare them with the equations of motion for classical fields in the limit $\alpha \rightarrow 1$. The Yukawa interaction is an interaction used to describe the nuclear force between nucleons. Also it is used in the Standard Model to describe the coupling between the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion particles).

In the following, mathematical tools are briefly reviewed. Then in Sec. 3 we present fractional Euler-Lagrange equations for scalar Yukawa interaction. Section 4 is devoted to obtain Heisenberg equations of motion in terms of Hamiltonian density in fractional form. At last, in Sec. 5, we will present some conclusions.

2. Mathematical Tools

The fractional derivative has different definitions such as: Grünwald–Letnikov, Riemann–Liouville (RL), Riesz, Caputo and generalized functions approach. The most commonly used definitions are those of Riemann–Liouville (RL) and Caputo. In this section we briefly present some fundamental definitions. The left and right partial Riemann–Liouville and Caputo fractional derivative of order α_k , $0 < \alpha_k < 1$, of a function f depending on n variables, x_1, \dots, x_n over the domain $\Omega = \prod_{i=1}^n [a_i, b_i]$ with respect to x_k are defined as follows (Muslih *et al.*, 2010):

The partial left RL fractional derivative

$$(+\partial_k^\alpha f)(x) = \frac{1}{\Gamma(1-\alpha_k)} \partial x_k \int_{a_k}^{x_k} \frac{f(x_1, \dots, x_{k-1}, u, x_{k+1}, \dots, x_n)}{(x_k - u)^{\alpha_k}} du \quad (1)$$

The partial right RL fractional derivative

$$(-\partial_k^\alpha f)(x) = \frac{-1}{\Gamma(1-\alpha_k)} \partial x_k \int_{x_k}^{b_k} \frac{f(x_1, \dots, x_{k-1}, u, x_{k+1}, \dots, x_n)}{(u - x_k)^{\alpha_k}} du \quad (2)$$

The partial left Caputo fractional derivative

$$(^c\partial_k^\alpha f)(x) = \frac{1}{\Gamma(1-\alpha_k)} \int_{a_k}^{x_k} \frac{\partial_u f(x_1, \dots, x_{k-1}, u, x_{k+1}, \dots, x_n)}{(x_k - u)^{\alpha_k}} du \quad (3)$$

The partial right Caputo fractional derivative

$$(^c\partial_k^\alpha f)(x) = \frac{-1}{\Gamma(1-\alpha_k)} \int_{x_k}^{b_k} \frac{\partial_u f(x_1, \dots, x_{k-1}, u, x_{k+1}, \dots, x_n)}{(u - x_k)^{\alpha_k}} du \quad (4)$$

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary order (Oldham & Spanier, 1974; Miller & Ross, 1993; Hilfer, 2000). The theory of derivatives of a non-integer order has many applications in various fields of physics from classical and quantum mechanics and electrodynamics to field theory (Goldfain, 2012; Nasrolahpour, 2013; Tarasov, 2013; El-Nabulsi, 2013). The results of several recent researchers confirm that fractional derivatives seem to arise for important mathematical reasons.

The quantization of systems with fractional derivatives is an important area in the theory and applications of fractional differential and integral calculus (Dirac, 1964; Eriksen & Lienas, 1980; Gray & Kobe, 1982; Laskin, 2002a; Lim & Muniady, 2004; Muslih & Baleanu, 2005b). Rabei *et al.* applied fractional calculus to obtain the Hamiltonian formalism of non-conservative systems (Rabei *et al.*, 2007b). They used the definition of Poisson bracket to obtain the equations of motion in terms of these brackets. The commutation relations and the Heisenberg equations of motion are also obtained. Jaradat used Dirac algebraic method to quantize the Schrödinger Lagrangian density by determining the fractional creation and annihilation operators and constructing the fractional canonical commutation relations (CCRs) (Jaradat, 2013).

Recent investigations have shown that the Lagrangian and Hamiltonian formulation can be applied to fractional fields. Baleanu and Muslih have extended the derivation of the usual Euler-Lagrange equations of motion for classical field to the case the Lagrangian contains fractional derivatives of fields (Baleanu & Muslih, 2005). They also obtained the fractional Klein-Gordon equation using the fractional variational principle and the Dirac equation with fractional derivatives of order 2/3. Rabei *et al.* constructed the Hamiltonian formulation of discrete and continuous fields in terms of fractional derivatives (Rabei *et al.*, 2007a). The fractional Hamiltonian is not uniquely defined; it seems that there are several choices of fractional Hamiltonian giving the same classical Hamiltonian.

As a new application, in this paper we propose the fractional Lagrangian density for scalar fields with Yukawa interaction. Then using the fractional variational principle, we obtain the fractional Euler-Lagrange equations of motion. Furthermore, we aim to construct the fractional canonical commutation relations and to obtain the fractional Heisenberg equations of motion for the fields

معادلات هايزنبرغ الكسرية لتفاعل يوكاوا العددي

أمل فرحان المعايطة

ملخص

في هذا العمل أوجدنا معادلات أويلر-لاجرانج للمجالات العددية الخاضعة لتفاعل يوكاوا باستخدام مشتقة كابوتو الكسرية. بتطبيق مبدأ التغير على دالة التغير (S) وجدنا معادلات أويلر-لاجرانج للحركة. ثم أوجدنا صياغة دالة لاجرانج ودالة هاميلتون الكسرية من الرتبة α للمجالات العددية الخاضعة لتفاعل يوكاوا. كذلك تم حساب معادلات هايزنبرغ الكسرية للحركة. وعلاوة على ذلك تبين أن المعادلات في الحدود الكلاسيكية ما هي إلا حالة خاصة من المعادلات التي حصلنا عليها عندما تؤول المشتقة الكسرية إلى الرقم واحد.

Fractional Heisenberg Equations for Scalar Yukawa Interaction

Amal F. Al-Maaitah ^{*}

Abstract

This paper presents fractional Euler-Lagrange equations for scalar fields with Yukawa interaction defined in terms of Caputo fractional derivatives. By applying the variational principle to a fractional action S , we obtained the fractional Euler-Lagrange equations of motion. Then we presented Lagrangian and Hamiltonian densities for the fractional scalar fields with interaction of order α . We also provided expressions for fractional Heisenberg equations of motion for scalar fields with Yukawa interaction. Moreover, the classical results are obtained as a particular case of fractional formulation in the limit $\alpha \rightarrow 1$.

Keywords: Fractional Heisenberg Equations, Riemann–Liouville and Caputo Fractional Derivatives, Fractional Variational Principle, Lagrangian and Hamiltonian Formulations.

* قسم الفيزياء، كلية العلوم، جامعة مؤتة، الأردن.

تاریخ تقدیم: 2019/7/4. تاریخ قبول البحث: 2019/11/17

© جميع حقوق النشر محفوظة لجامعة مؤتة، الكرك، المملكة الأردنية الهاشمية، 2021.

Contents

*	Fractional Heisenberg Equations for Scalar Yukawa Interaction Amal F. Al-Maaitah	13-28
*	Heading date effect on winter Triticale (X Triticosecale Wittmack) grain yield production Zakaria I. Al-Ajlouni, Ibrahim S. Elbasyoni, Vikas Belamkar, P. Stephen Baenziger	29-44
*	Ordered-Statistic Decoding of Linear Block Codes Utilizing Hash and Syndrome Saif E.A Alnawayseh	45-62
*	Performance Analysis of Pyramid Si/SiGe based Solar Cell: A Simulation Study Ziyad Al Tarawneh, Mustafa Muheilan	63-90
*	Integrated Coastal Zone Management: A Vision for Progress in Effective Implementation in Aqaba, Jordanian Mohammad Al-Zibdah, Mohammad Badran	13-40

**A Refereed and Indexed Journal Published by
The Deanship of Scientific Research
Mu'tah University, Jordan**

Subscription Form

I would like to subscribe to this Journal (Please, select):

Humanities and Social Sciences Series.
 Natural and Applied Sciences Series.

For each volume; effective:

Name of Subscriber:

Address:

Method of Payment:

Cheque Banknote Mail Money Order

No.:

Date:

Signature:

Date:

Annual Subscription Rate (JD):

The value of the annual subscription for each series (J.D. or Equivalent):

Inside Jordan

- Individuals J.D (9) Establishments J.D (11)

Outside Jordan \$ 30

Postal Fees Added

Editorial Correspondence

Prof. Dr. Osama Mohawesh

Editor-in-Chief

Mu'tah Lil-Buhuth wad-Dirasat
Deanship of Scientific Research
Mu'tah University, Mu'tah (61710),
Karak, Jordan.

Tel: . +962-3-2372380 Ext. 6117
Fax. +962-3-2370706

Email: Darmutah@mutah.edu.io

relationships, affiliations, and knowledge of the subject or material discussed in the manuscript.

7. Hazards of Material, Human, or Animal Data: If the research involves the use of chemicals, procedures, or equipment that may have any unusual risks, the authors must clearly identify them in their work. In addition, if it involves the use or experimentation of humans or animals, the authors must ensure that all actions have been carried out in accordance with the relevant laws and regulations and that the authors have obtained prior approval of these contributions. Moreover, the privacy rights of human must also be considered.
8. Cooperation: Authors must fully cooperate and respond promptly to the requests of the Editorial Board for clarifications, corrections, proof of ethical approvals, patient approvals, and copyright permissions.
9. Fundamental Errors in Submitted or Published Work: If authors find significant errors or inaccuracies in their submitted or published manuscripts, they must immediately notify the Editorial Board to take the action of correcting or withdrawing their work.

Editorial Correspondence

Prof. Dr. Osama Mohawesh

Editor-in-Chief

Mu'tah Lil-Buhuth wad-Dirasat
Natural and Applied Sciences Series
Mu'tah University, Mu'tah (61710),
Karak, Jordan.
Tel: . +962-3-2372380 Ext. 6117
Fax. +962-3-2370706
Email: Darmutah@mutah.edu.jo

Second: Duties of the Reviewers

1. Contributing to the decisions of the Editorial Board.
2. Punctuality: Any reviewer who is unable to review the submitted manuscript for any reason should immediately notify the Editorial Board, so that other reviewers can be contacted.
3. Confidentiality: Any manuscript received by the Journal for reviewing and publishing is confidential; it should not appear or discussed with others unless authorized by the Editorial Board. This also applies to the invited reviewers who have rejected the invitation for reviewing.
4. Objectivity: The reviewing process of the submitted manuscript should be objective and the reviewer comments should be clearly formulated with the supporting arguments so that the authors can use them to improve the quality of their manuscript away from the personal criticism of the author(s).
5. Disclosure and Conflict of Interests: Any invited reviewer must immediately notify the Editorial Board that he/she has a conflict of interest resulting from competitive, cooperative or other relations with any of the authors so that other reviewers may be contacted.
6. The confidentiality of information or ideas that are not published and have been disclosed in the manuscript submitted for reviewing should not be used without a written permission from the author(s). This applies also to the invited reviewers who refuse the reviewing invitation.

Third: Duties of the Authors

1. Manuscript preparation: Authors should abide by publishing rules, technical specifications, publication procedures, and publication ethics available at the Journal website.
2. Plagiarism: Authors must not in any case steal the rights of other authors in any manner, as doing so is considered plagiarism, which entails burdening the legal and ethical responsibilities.
3. Originality: Authors must ensure that their work is original and relevant work of other authors is documented and referenced. Absence of documentation is unethical and represents plagiarism which takes many forms, as mentioned at <https://www.elsevier.com/editors/perk/plagiarism-complaints>
4. The author(s) should not send or publish the manuscript to different journals simultaneously. Also, authors should not submit a manuscript that has already been published in another journal, because submitting the manuscript simultaneously to more than one journal is unethical and unacceptable.
5. Authorship of the Manuscript: Only persons who meet the following authorship criteria should be listed as one of the authors of a manuscript as they should be responsible for the manuscript content: 1) present significant contributions to the design, implementation, data acquisition, analysis or interpretation of the study; 2) critically contribute to the manuscript writing and revision or 3) have seen and approved the final version of the manuscript and agreed to submit it for publication.
6. Disclosure and Conflict of Interest: Authors must report any conflict of interest that can have an impact on the manuscript and its reviewing process. Examples of potential conflicts of interest to be disclosed such as personal or professional

3. Publication Procedures

1. The author(s) submit the research manuscript to the Deanship of Scientific Research at mut'ah University at the Journal's website <https://ejournal.mutah.edu.jo/>
2. The author(s) signs a publication pledge in an official form available at the Journal's website.
3. The manuscript is registered in the Journal special records.
4. The submitted manuscript is technically checked and initially reviewed by the Editorial Board to determine its eligibility for peer review. The board is entitled to assign peer reviewers or to reject the manuscript without giving reasons.
5. If initially accepted by the Editorial Board, the manuscript will be sent to two reviewers, who should reply within a maximum period of one month. In case of failure to reply within the specified time, the manuscript shall be sent to another reviewer. Once receiving the reports of the reviewers, the Editorial Board decide the following:
6. The manuscript should not be reviewed by a peer who works at the same institution.
7. The author must make the suggested corrections of the reviewers within a maximum period of two weeks. Failing to meet this requirement will stop the procedure of publishing the manuscript.
8. If the reviewer rejects the required corrections, the author will be given a period of two weeks to make the necessary corrections, otherwise, the paper will be rejected.
9. Even if the reviewers approve the required corrections, the author(s) must abide by completing the essential technical specifications to be eligible to obtain the letter of acceptance.
10. The accepted manuscripts in the Journal are arranged for publication in accordance with the policy of the Journal.

4. Publication Ethics

First: Duties of the Editorial Board

1. Justice and independence: The Editorial Board evaluates the manuscripts submitted for publication on the basis of importance, originality, validity, clarity and relevance of the journal, regardless of the gender of the authors, their nationality or religious belief, so that they have full authority over the entire editorial content and timing of publication.
2. Confidentiality: The Editorial Board and editorial staff are responsible for the confidentiality of any information about the submitted manuscripts and not to disclose this information to anyone other than the author, reviewers, and publishers, as appropriate.
3. Disclosure and Conflicts of Interest: The Editorial Board and editorial staff are responsible for the non-use of unpublished information contained in the research submitted for publication without the written consent of the authors. The Editorial Board themselves avoid considering research with which they have conflict of interest, such as competitive, cooperative, or other relationships with any of the authors.
4. Publishing Decisions: The Editorial Board shall ensure that all manuscripts submitted for publication are subject to reviewing by at least two reviewers who are experts in the field of manuscript. The Board is responsible for determining which of the research papers will be published, after verifying their relevance to researchers and readers, and the comments of the reviewers.

Mu'tah Lil-Buhuth wad-Dirasat
"Natural and Applied Sciences Series"
A refereed and indexed research Journal
Published by Mu'tah University

1. Publishing Rules

In accordance with the Strategic Plan of mut'ah University and its vision to meet the international standards of world university rankings and classifications, and following the Strategic Plan and the Vision of the Deanship of Scientific Research, which states "Towards a Deanship of Scientific Research, which promotes the classification of the university locally, regionally and globally," and its Mission of "Creating an environment capable of producing scientific research that contributes to enhancing the role of the university in research and innovation locally, regionally and globally." The Deanship of Scientific Research has decided to develop the journal of Mu'tah Lil-Buhūth wad-Dirāsāt to be indexed and included in international databases such as Scopus, ISI and PubMed, and to improve its Impact Factor (IF) so as to internationalize its research product.

Subsequently, when submitting a manuscript for publication in the Journal, the followings shall be considered:

1. Adopting the American Psychological Association (APA) Style, for more information visit <https://www.apa.org> or <https://ejournal.mutah.edu.jo/>
2. All Arabic references should be written in English in the body of the article and in the bibliography.
3. Translation of all Arabic references into English, keeping the original Arabic list available for peer reviewing and technical checking.
4. Rearrange all references in an alphabetical order, in accordance with APA Style.
5. The technical specifications for manuscript editing (available at the journal website) should be strictly followed, as submitted articles are subject to accurate technical review. If the required technical specifications are not followed, the submitted manuscript will be returned.
6. All required documents and forms should be submitted online at <https://ejournal.mutah.edu.jo/>, as shown in the table below.
7. Violating any of the above-mentioned requirements will lead to rejecting the submitted manuscript.

Num	File Name
1.	Cover Letter
2.	Title Page
3.	Abstract
4.	Research Document
5.	References
6.	Pledge

2. Technical Specifications for publication

The technical specifications for manuscript editing (available at the journal website <https://ejournal.mutah.edu.jo/>) should be strictly followed, as submitted articles are subject to accurate technical review. If the required technical specifications are not followed, the submitted manuscript will be returned.

Mu'tah Lil-Buhuth wad-Dirasat
"Natural and Applied Sciences Series"
A refereed and indexed research Journal
Published by Mu'tah University

The Journal of Mu'tah Lil-Buhūth wad-Dirāsāt; **Natural and Applied Sciences Series**, is a scholarly, peer reviewed, and an indexed scientific journal. It has been published regularly by the Deanship of Scientific Research since 1986 in one volume each year since its establishment. The volume contains two issues. It is supervised by an International Editorial and Advisory Boards that have specialized in different fields of natural and applied science. It has an International Standard Serial Number (ISSN 1022-6812).

The Journal publishes original articles that contribute to promoting knowledge in all disciplines of **Natural and Applied Sciences Series**. All submitted manuscripts are subject to strict criteria that include technical editing and peer reviewing by two reviewers to assure research originality and validity.

The Journal has a leading reputation locally and regionally over the past three decades. It has become an accredited Journal for the purpose of promotion of researchers in all public and private universities, in Jordan in particular, and in Arab World in general. This justifies the large number of submitted papers to the Journal from various local and regional universities and institutions.

To ensure the quality of research published in the Journal, it follows strict criteria and procedures that guarantee the quality of the research product. This includes the following:

1. Publishing rules
2. Technical specifications for publication
3. Publishing Procedures
4. Publishing Ethics

Dean of Scientific Research
Editor-in-Chief

Prof. Dr. Osama Mohawesh

International Advisory Board

Prof. Arafat Awajan, Mutah University, Jordan.

Prof. Osama Mohawesh, Mutah University, Jordan.

Prof. Magdi Mohareb, University of Ottawa, Canada.

Prof. Salwa Metwally, University of Cairo, Egypt .

Prof. Moussa Ayyash, Chicago State University, USA.

Prof. Mohammad Affan Badar, University of Sharjah, UAE.

Prof. Khalid Qaraqe, Texas A&M University, Qatar.

Prof. Hadi Abulrub, University of the West of England, England.

Prof. Rachid Salghi, Ibn Zohr University, Morocco.

Prof. Faramarz Djavanroodi, Prince Mohamad Bin Fahad University, KSA.

Prof. Charalambos (Pambos) Anastassiou, University of Cyprus, Cyprus.

Editorial Board

Editor-in-Chief
Prof. Dr. Osama Mohawesh

Members

Prof. Hani Al-Hamidah	Prof. Mohammed Alanbar
Prof. Awni Al-Hammouri	Prof. Noordeen Shoqirat
Prof. Yazeed A. Al-Sbou	

Journal Secretary
Mrs. Razan Mubaydeen

Director of Scientific Journal Department
Dr. Khalid Ahmad Al-Sarairah

Director of Publications
Mrs. Seham Al-Tarawneh

Technical Editing
Dr. Mahmoud N. Qazaq

Typing & Layout Specialist
Orouba Sarairah

Directorate of Libraries and National Documents
Deposit Number (1986/5/201)

Department of Press and Publications
License Number (3353/15/6)
22/10/2003

Contents:

**Google
Scholar**

Volume (36)

Number (2) 2021

ISSN 1022 - 6812

MU'TAH

Lil-Buhūth wad-Dirāsāt

A Refereed and Indexed Journal

Natural and Applied Sciences Series

Published by Mu'tah University

Volume (36)

Number (2) 2021

ISSN 1022 - 6812

MU'TAH

Lil-Buhūth wad-Dirāsāt

A Refereed and Indexed Journal

Natural and Applied Sciences Series

Published by Mu'tah University