الزراعة المائية: دراسة مرجعية

Moaed Ali Al Meselmani, Ammar Ali Albalasmeh, Kamel Z Mahmoud

Abstract


أدى النمو الهائل للسكان في العالم إلى زيادة الطلب العالمي على الغذاء والتوسع في النشاط الزراعي مما زاد الضغط على موارد المياه والتربة المتاحة والتي هي محدودة أصلاً. سيصبح من المستحيل إطعام سكان العالم في المستقبل القريب باستخدام نظم الزراعة التقليدية ومن المهم تحسين وتطوير الطريقة التي ننتج بها غذائنا باستخدام تقنيات إنتاج أكثر تقدمًا ومن الضروري زيادة إنتاج الغذاء من الأراضي الزراعية الحالية باستخدام مدخلات أقل لتقليل الضغط على الموارد الطبيعية وبدون تقويض قدرتنا على الاستمرار في إنتاج المزيد من الغذاء. تمثل الزراعة المائية الحل الأمثل وهي صناعة متنامية لم تصل بعد إلى كامل إمكاناتها وتم استخدامها بنجاح في زراعة مجموعة متنوعة من المحاصيل مثل الخس والطماطم والخيار والورقيات والأزهار. في الزراعة المائية تزرع النباتات دون استخدام للتربة كوسط للنمو وتزود بالعناصر الغذائية من خلال المحاليل المغذية. من مزايا الزراعة بدون تربة الغلة العالية في مساحة محدودة وتوفير في المياه والأسمدة ويمكن أيضًا استخدامها في الأماكن التي يستحيل فيها القيام بأي نشاط زراعي أو المناطق التي تتميز بتدهور شديد للتربة. يمثل نهج الزراعة بدون تربة استجابة مواتية نحو زراعة أكثر صداقة للبيئة وأداة واعدة في مجال الغذاء الأمن. حاولنا من خلال هذه المقالة المرجعية شرح الزراعة المائية فوائدها، تاريخها، مكوناتها، أنواعها ومستقبلها.


Keywords


الجفاف, الامن الغذائي, الزراعة الحديثة, الزراعة بدون تربة, المحلول المغذي, بيئات النمو

References


Adams, P. (2002). Nutritional control in hydroponics. In: Savvas D., Passam H.C. (eds.), Hydroponic Production of Vegetables and Ornamentals. Athens, Embryo Publications: 211–262.

Asher, CJ. and Edwards DG. (1983). “Modern solution culture techniques” in Inorganic plant nutrition. eds. A. Pirson, and M. H. Zimmermann (Berlin, Heidelberg: Springer), 94–119.

Berry, EM., Dernini, S., Burlingame, B., Meybeck, A. and, Conforti P., 2015. Food security and sustainability: can one exist without the other? Public Health Nutrition: page 1 of 10 doi:10.1017/S136898001500021X.

Blok, C., van, Os E., Daoud, R., Waked, L. and Hasan, A. (2017). Hydroponic Green Farming Initiative: Increasing water use efficiency by use of hydroponic cultivation methods in Jordan Final report. Report GTB-1447 Project number: 374 221 0000 DOI number: 10.18174/426168. https://edepot.wur.nl/426168.

Bullock, CH., Collier, MJ. and Convery, F. (2012). Peatlands, their economic value and priorities for their future management—The example of Ireland. Land Use Policy, 29: 921–928.

Cheng, A., Lin, WT. and Huang, R. (2011). Application of rock wool waste in cement-based composites. Mater. Design, 32: 636–642. doi: 10.1016/j.matdes. 2010.08.014.

Cherif, M., Tirilly, Y. and Belanger, RR. (1997). Effect of oxygen concentration on plant growth, lipid peroxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions. European Journal of Plant Pathology, 103(3): 255-264.

Cooper, A. (1988). "1. The system. 2. Operation of the system". In: The ABC of NFT. Nutrient Film Technique, 3-123, Grower Books (ed.), ISBN 0901361224, London, England.

Di Lorenzo, R., Pisciotta, A., Santamaria, P. and Scariot, V. (2013). From soil to soil-less in horticulture: quality and typicity. Italian Journal of Agronomy, 8: 255 – 260.

Dresboll, DB. (2010). Effect of growing media composition, compaction and periods of anoxia on the quality and keeping quality of potted roses (Rosa sp.) Scientia Horticulturae, 126: 56-63.

Dubey, N. and Nain, V. (2020). Hydroponic— The Future of Farming. International Journal of Environment, Agriculture and Biotechnology, 5(4) Jul-Aug, 2020 | Available: https://ijeab.com/

El-Kazzaz, KA. and El-Kazzaz, AA. (2017). Soilless Agriculture a New and Advanced Method for Agriculture Development: an Introduction. Agri Res & Tech: Open Access J., 3(2): 555610. DOI: 10.19080/ARTOAJ.2017.03.555610.

FAO. (1990). Plant Production and Protection Paper No 101, 1990. Soilless culture for horticultural crop production. FAO, Rome, 188 pp.

Fascella, G. (2015). Growing substrates alternative to peat for ornamental plants. Chapter 3. In: Asaduzzaman M, editor. Soilless Culture—Use of Substrates for the Production of Quality Horticultural Crops. Rijeka, Croatia: InTech Open, pp. 47-67.

Fazlil Ilahi, WF., Ahmad, D and Husain, MC. (2017). Effects of root zone cooling on butterhead lettuce grown in tropical conditions in a coir-perlite mixture. Hortic. Environ. Biotechnol. 58: 1–4. doi: 10.1007/s13580-017-0123-3.

Grattan, SR. and Grieve, CM. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 127–157.

Graves, CJ. (1983). The Nutrient Film Technique. Horticutural Review, 5: 1-44.

Gyanendra, SS., Raweya, AB. and Sergi, S. (2020). Business valuation strategy for new hydroponic farm development – a proposal towards sustainable agriculture development in United Arab Emirates. British Food Journal © Emerald Publishing Limited 0007-070X DOI 10.1108/BFJ-06-2020-0557.

Handreck, KA. (1993). Properties of coir dust, and its use in the formulation of soilless potting media. Commun. Soil & Plant Anal, 24:349-363.

Henry, MM., Kibwika, P., Nampala, P., Manyong, V. and Yami, M. (2020). Factors influencing implementation of bylaws on sustainable crop intensification: Evidence from potatoes in southwestern Uganda, Cogent Social Sciences, 6:1, 1841421.

Hewitt, EJ. (1996). Sand and Water Culture Methods Used in the Study of Plant Nutrition. Technical Communication No. 22. Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, Maidstone, Kent, England.

Hoagland, DR. and Arnon, DI. (1938). The water culture method for growing plants without soil. California Agricultural Experiment Station Circulation, 347, 32.

Ilango, C. (2017). Food Sustainability. American Public University, West Virginia. International Journal of Advance Research, Ideas and Innovations in Technology. Volume 3, Issue 6Page | 567. ISSN: 2454-132X. Available online at www.ijariit.com.

Islam, S. (2008). Evaluating performance of ecologically sound organic substrates under different temperature regimes. Int J Agric and Biol, 10: 297–300.

Jain, A., Kumari, N. and Kumare, JhaV. (2019). A review on hydroponic system: hope and hype, 2019. 143-149. In book: Recent Advances in Chemical Sciences & Biotechnology. Publisher: New Delhi Publication.

Jong, WL., Beom, SL., Jong, GK., Jong, HB., Yang, GK., Shela, G. and Jeong, HL. (2014). Effect of root zone aeration on the growth and bioactivity of cucumber plants cultured in perlite substrate. Biologia, 69(5): 610—617, 2014 Section Cellular and Molecular Biology DOI: 10.2478/s11756-014-0360-1.

Khan, S., Purohit, A. and Vadsaria, N. (2020): Hydroponics: current and future state of the art in farming, Journal of Plant Nutrition, DOI: 10.1080/01904167.2020.1860217 To link to this article: https://doi.org/10.1080/01904167.2020.1860217.

Landis, TD., Tinus, RW., McDonald, SE. and Barnett, JP. (1990). The container tree nursery manual: volume 2, containers and grow¬ing media. Agriculture Handbook 674. Washington, DC: U.S. Department of Agriculture, Forest Service. 88 p.

Lange, MA. (2019). Impacts of Climate Change on the Eastern Mediterranean and the Middle East and North Africa Region and the Water–Energy Nexus. Atmosphere, 10, 455. DOI: 10.3390/atmos10080455.

Lee, JY., Rahman, A., Azam, H., Kim, HS. and Kwon, MJ. (2017). Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system. PLoS One 12:e0177041. doi: 10.1371/journal.pone.0177041.

Lucas, RE. and Davis, JF. (1961). Relationship between pH values of organic soils and availability of 12 plant nutrients. Soil Sci., 92 (3): 177–182.

Lykas, CN., Katsoullas, P., Giaglaras, P. and Kittas, C. (2006). “Electrical conductivity and pH prediction in Recirculated nutrient solution of greenhouse soilless rose crop,” Journal of plant nutrition, 29: 1585–1599.

Maloupa, E., Mitsios, I., Martinez, PF. and Bladenopoulou, S. (1992). Study of substrates used in gerbera soilless culture grown in plastic greenhouse. Acta Hort., 323: 139-144.

Marschner, P. (2012). Rhizosphere biology. In: Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, Amsterdam, pp 369–388.

Mazuela, P. (2005). Vegetable waste compost as substrate for melon. Commun. Soil Sci. Plant Anal., 36: 1557–1572. doi: 10.1081/CSS-200059054.

Mengel, K. (1994). Iron availability in plant tissue-Iron chlorosis on calcareous soils. Plant and Soil, 165: 275–283.

Michel, JC. (2010). The physical properties of peat: a key factor for modern growing media. Mires Peat, 6 (2010), p. 6 (article 02).

Miller, JH. and Jones, N. (1995). Organic and compost-based grow¬ing media for tree seedling nurseries. World Bank Tech. Pap. No. 264, Forestry Series. Washington, DC: The World Bank. 75 p.

Mills, PJW., Smith, IE. and Marais, G. (1990). A greenhouse design for a cool subtropical climate with mild winters based on microclimatic measurements of protected environments. Acta Hort., 281: 83-94.

Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali SA. (2020). Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future. Outlook. Front. Nanotechnol., 2:579954. doi: 10.3389/fnano.2020.579954.

Morgan, L. (2003). Hydroponic substrates,The Growing Edge,15(2):54–66

Nederhoff, E. and Stanghellini, C. (2010). “Water use efficiency of tomatoes in greenhouses and hydroponic,” Practical Hydroponics and Greenhouse, no. 115: 52–59.

Nemali, KS. and van Iersel, MW. (2004). Light Intensity and Fertilizer Concentration: I. Estimating Optimal Fertilizer Concentration from Water-Use Efficiency of Wax Begonia. HortScience, Vol.39, No.6, (Oct 2004), pp. 1287-1292. ISSN 0018-5345.

Nielsen, CJ., Ferrin, DM. and Stanghellini, ME. (2006). Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Canadian Journal of Plant Pathology, 28(3): 450-460.

Nikolic, M., Cesco, S., Römheld, V., Varanini, Z. and Pinton, R. (2007). Short-term interactions between nitrate and iron nutrition in cucumber. Funct. Plant Biol., 34: 402–408. doi: 10.1071/FP07022.

Patle, GT., Kumar, M. and Khanna, M. (2020). Climate-smart water technologies for sustainable agriculture: a review. Journal of Water and Climate Change, 11-4.

Pieters, J., Assche, B. and Buekens, A. (1998). Reducing Solid Waste Streams Specific to Soilless Horticulture. HortTechnology, 8. 10.21273/HORTTECH.8.3.396.

Raviv, M. and Lieth, JH. (2008). Soilless Culture Theory and Practice. Amsterdam: Elsevier Science.

Resh, HM. (2013). Hydroponic Food Production: a Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower. CRC Press, Boca Raton, FL

Roosta, HR., Bagheri, MH., Hamidpour, M. and Roozban, MR. (2016). Interactive Effects of Nitrogen Form and Oxygen Concentration on Growth and Nutritional Status of Eggplant in Hydroponics. Journal of Agricultural Science and Technology, 18: 731-739.

Rosenbaum, C. (2020). Design of a Deep Flow Technique Hydroponic System and an Elementary Education Module for Tri Cycle Farms. Biological and Agricultural Engineering Undergraduate Honors. Theses Retrieved from https://scholarworks.uark.edu/baeguht/73.

Salisbury, FB. and Ross, CW. (1991). Plant Physiology. 4th Edition, CBS Publishers and Distributors, New Delhi.

Sardare, MD. and Admane, SV. (2013). A Review on Plant without Soil –Hydroponics, International Journal of Research in Engineering and Technology, 2(3): 299-304.

Savithri, P., Murugappan, V. and Nagarajan, R. (1993). Possibility of economizing K fertilization by composted coir peat application. Fert. News, 38:39-40.

Savvas, D. (2001). Nutritional Management of Vegetables and Ornamental Plants in Hydroponics. In R. Dris, R. Niskanen & S.M. Jain, eds. Crop Management and Postharvest Handling of Horticultural Products, p. 37–87. Vol. I: Quality Management. Science Publishers, Enfield, NH, USA.

Savvas, D., Ntatsi, G. and Passam, HC. (2008). Plant Nutrition and Physiological Disorders in Greenhouse Grown Tomato, Pepper and Eggplant. Europ. J. Plant Sci. Biotech., 2: 45–61.

Sharma, N., Acharya, S., Kumar, K., Singh, N. and Chaurasia, OP. (2018). Hydroponics as an advanced technique for vegetable production: an overview. Journal of Soil and Water Conservation, 17(4): 364-371, ISSN: 022-457X (Print); 2455-7145 (Online); DOI: 10.5958/2455-7145.2018.00056.5.

Shomar, B., Darwish, M. and Rowell, C. (2014). What does integrated water resources management from local to global perspective mean? Qatar as a case study, the very rich country with No water. Water Resour. Manag. 28, 2781. https://doi.org/10.1007/ s11269-014-0636-9.

Shrestha, A. and Dunn, B. (2013). Hydroponics: Technical report. Report number: HLA-6442. Oklahoma State University.

Steiner, AA. (1984). The Universal Nutrient Solution, Proceedings of IWOSC 1984 6th International Congress on Soilless Culture, pp. 633-650, ISSN 9070976048, Wageningen, The Netherlands, Apr 29-May 5, 1984.

Taiz, L. and Zeiger, E. (1998). Plant Physiology. Sinauer Associates, Inc. Publishers. Sunderland, ISBN : 0878938311, Massachusetts, U. S. A.

Truog, E. (1946). pH and nutrient availability. Soil Sci. Soc. Am. Proc., 11:305-308.

Vaughn, SF., Deppe, NA., Palmquist, DE. and Berhow, MA. (2011). Extracted sweetcorn tassels as a renewable alternative to peat in greenhouse substrates. Ind.Crops Prod., 33 (2):514–517.

Waiba, KM., Sharma, P., Sharma, A., Chadha, S. and Kaur, M. (2020). Soil-less vegetable cultivation: A review. Journal of Pharmacognosy and Phytochemistry, 9(1): 631-636.

Windsor, G. and Schwarz, M. (1990). Soilless Culture for Horticultural Crop Production. FAO, Plant Production and Protection. Paper 101. Roma, Italia.

Withrow, RB. and Withrow, AP. (1948). Nutriculture. Purdue University Agr. Expt. Sta., Bul., 328.

Wortman, SE. (2015). Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic., 194: 34–42.


Refbacks

  • There are currently no refbacks.


Published by
MUTAH UNIVERSITY