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Abstract 

In this paper, we provide the canonical approach for studying the damped 
harmonic oscillator based on the doubling of degrees of freedom approach. 
Explicit expressions for Lagrangians of the elementary modes of the problem 
and characterising both forward and backward time propagations are given. 
A Hamiltonian analysis showing the equivalence with the Lagrangian 
approach is also done. To this end, the techniques of separation of variables 
were applied. 
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 بعد مضاعفة جاكوبي -هامیلتون معالجة الهزاز التوافقي المتخامد باستخدام طریقة

 درجات الحریة
 

 حمد البطوشأمحمد 
 المعایطة  أمل فرحان

 خالد عیسى نوافله
 

 ملخص

بعد  جاكوبي -هامیلتونباستخدام طریقة التوافقي المتخامد  الهزازفي هذا العمل قمنا بدراسة 
تتضمن هذه   النظام.  هذا  وصفصریحة لدالة لاغرانج لتعابیر  لقد تم تقدیم    .  مضاعفة درجات الحریة

في نظام ثنائي   نظمةلأاأن یتم وصف    الأنظمة صورة أساسیة وصورة زمنیة معكوسة. هذا یعني دائماً 
تم تطبیق  ول.لأمن النظام ا الطاقة المنقولة یمتص الآخرد. نظام فرعي واحد یبدد الطاقة و الأبعا

لهذه  تقنیات الفصل بین المتغیرات وطریقة التحولات الفیصلیة من أجل حل معادلة هاملتون جاكوبي
 .نظمةلأا
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Introduction 
The Hamilton-Jacobi theory is the principal of classical mechanics. This 

theory principally helpful in identifying conserved quantities for mechanical 
systems, which may be likely even when the mechanical problem itself cannot 
be solved totally.  

The Hamilton-Jacobi Equation is an important example of how new 
information about mechanics can come out of the action. It is an important 
step to formulate the equation of motion for simple harmonic oscillator of 
nth-dimensional (Goldstein, 2000). 

The inverse problem of variational calculus is to construct the Lagrangian 
from the equations of motion. Different Lagrangian representations are 
obtained from the direct and indirect approaches (Santilli, 1984). In the direct 
representation as many variables are introduced as there are in the equations 
of motion. The equation of motion corresponding to a coordinate q is related 
with the variational derivative of the action with respect to the same 
coordinate. Whereas, in the indirect representation, the equation of motion is 
supplemented by its time - reversed image. The equation of motion with 
respect to the original variable then corresponds to the variational derivative 
of the action with respect to the image coordinate and viceversa (Bateman, 
1931; Feshbach and Tikochinsky, 1977). 

However, Serhan et al. obtained the action function for a suitable 
Hamiltonian that describes the damped harmonic oscillator, and then the 
system is quantized using the WKB approximation and the canonical 
quantization (Serhan et al., 2018). In addition, Wang and Ru Wang formulated 
the least action principle for classical mechanical dissipative systems. They 
considered a whole conservative system composed of a damped moving body 
and its environment receiving the dissipated energy (Qiuping Wang & Ru 
Wang, 2018). 

Bateman showed that a procedure of doubling of degrees of freedom is 
required in order to use the usual canonical quantization methods (Bateman, 
1931). Applying this idea to damped harmonic oscillator one obtains a pair of 
damped oscillations (Blasone & Jizba, 2004).This system includes a primary 
one and its time reversed image. 

The aim of this paper is to extend the Hamilton-Jacobi formulation for 
doubling of degrees of freedom of the Time-Independent Mechanical 
systems.  Furthermore, we will apply the technique of separation of variables 
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and canonical transformations to solve the Hamilton-Jacobi partial 
differential equations for these systems. This leads to another approach for 
solving mechanical problems for doubling of degrees of freedom systems on 
equal footing as for regular systems. 

The paper is organized as follows. In section 2, a review of the Hamilton-
Jacobi Equation is introduced. In section 3, Doubling of Degrees of Freedom 
is discussed.Then in section 4 we present Hamilton-Jacobi Treatment of 
Damped harmonic Oscillator. The paper closes with some concluding 
remarks in section 5. 

 

Review of the Hamilton-Jacobi Equation 
We can reach the Hamilton Jacobi equation by using the action function 

as follows (Goldstein, 1980): 

Consider the action for N particles, with 3N configuration space 
coordinates  𝑥𝑥𝑖𝑖  . 

   𝑆𝑆(𝑥𝑥𝑖𝑖 , 𝑡𝑡) = ∫ 𝐿𝐿(𝑥𝑥𝑖𝑖, 𝑥𝑥�̇�𝚤, 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡
𝑡𝑡0

    (1)  

The action  𝑆𝑆 is defined as the integral of the Lagrangian  L  between two 
times t0 and t. 

Taking the first variation of the action integral (1) gives 

𝛿𝛿𝑆𝑆 = ∑ ��𝜕𝜕ℒ
𝜕𝜕𝑥𝑥𝑖𝑖

 𝛿𝛿𝑥𝑥𝑖𝑖�
𝑡𝑡0

𝑡𝑡
+ ∫ �𝜕𝜕ℒ

𝑑𝑑𝑥𝑥𝑖𝑖
− 𝑑𝑑

𝑑𝑑𝑡𝑡
𝜕𝜕ℒ
𝜕𝜕𝑥𝑥�̇�𝚤
�𝑡𝑡

𝑡𝑡0
𝛿𝛿𝑥𝑥𝑖𝑖  𝑑𝑑𝑡𝑡�𝑖𝑖  (2) 

The expression inside the integral that multiplies the variation 𝛿𝛿𝑥𝑥𝑖𝑖 must 
vanish for each 𝑖𝑖 (Euler- Lagrange equations) 

𝛿𝛿𝑆𝑆 = ∑ 𝜕𝜕ℒ
𝜕𝜕𝑥𝑥�̇�𝚤

 𝛿𝛿𝑥𝑥𝑖𝑖(𝑡𝑡) =𝑖𝑖 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖  𝛿𝛿𝑥𝑥𝑖𝑖(𝑡𝑡)   (3) 

Where we have used the assumption, that, although the particles could 
have started from any point 𝑥𝑥𝑖𝑖 at the initial time, the variation of that initial 
point is zero : δ𝑥𝑥𝑖𝑖 ( t0 ) = 0. We have also used the fact that ∂ℒ

∂𝑥𝑥�̇�𝚤
  is the 

momentum  𝑝𝑝𝑖𝑖 conjugate to the coordinate 𝑥𝑥𝑖𝑖  . 
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    But considering the action to be a function of the final positions 𝑥𝑥𝑖𝑖(t) 
and final time t, we also have for the first variation 

 𝛿𝛿𝑆𝑆 = ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥�̇�𝚤

 𝛿𝛿𝑥𝑥𝑖𝑖(𝑡𝑡)𝑖𝑖      (4) 

Comparing the two expressions (3) and (4) for the first variation of the 
action we have 

𝑝𝑝𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

                   (5)         

Differentiating the action with respect to time, we obtain 

𝐿𝐿 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥�̇�𝚤𝑖𝑖      (6)  

Substituting equation (5) into equation (6), we obtain 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ (∑ 𝑝𝑝𝑖𝑖𝑥𝑥�̇�𝚤𝑖𝑖 − 𝐿𝐿) = 0                (7)   

The expression in brackets is recognized as the Hamiltonian  𝐻𝐻(𝑥𝑥𝑖𝑖,𝑃𝑃𝑖𝑖 , 𝑡𝑡).  

 

Using 

 𝐻𝐻(𝑞𝑞𝑖𝑖,𝑝𝑝𝑖𝑖, 𝑡𝑡) = 𝑝𝑝𝑖𝑖𝑞𝑞�̇�𝚤  − 𝐿𝐿(𝑞𝑞𝑖𝑖, 𝑞𝑞�̇�𝚤 , 𝑡𝑡) 

 we can write equation (7) as 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝐻𝐻 �𝑥𝑥𝑖𝑖 ,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

, 𝑡𝑡� = 0    (8)                                     

Which is the Hamilton-Jacobi equation in terms of the action function S . 

 

Using the canonical transformations, we may determine the coordinates 
𝑥𝑥𝑖𝑖 by differentiate the function S (𝑥𝑥𝑖𝑖, 𝑡𝑡) with respect to 𝛼𝛼𝑖𝑖 and then put the 
results of these differentiations to new constants 𝛽𝛽𝑖𝑖. In this way we obtain 

𝛽𝛽𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼𝑖𝑖

      (9)   
      

 

Doubling of Degrees of Freedom 
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A doubling of degrees of freedom is a doubling from one field 
configuration to another. In dissipative systems, the energy of the damped 
subsystem of the whole system must be dissipated away and transferred to 
another subsystem. This invariably means that the damped oscillator is 
described by a two-dimensional system; one subsystem of which dissipates 
the energy and the other of which gets amplified by the transferred energy. 
The simplest model for dissipation is damped oscillators with one or two 
degrees of freedom. This kind of model has been suggested long ago by 
Bateman (Bateman, 1931; Hasse, 1975) and later by Morse and Feshbach 
(Morse and Feshbach, 1953) and Feshbach and Tikochinsky (Feshbach and 
Tikochinsky, 1977). 

The paradigm of the dissipative dynamics is the damped harmonic 
oscillator model. In a one-dimensional configuration space, its equation of 
motion is 

m�̈�𝑥+ 𝛾𝛾�̇�𝑥 + kx = 0          (10) 
  

Where 𝛾𝛾 is the damping constant or friction. Physically, this equation 
describes a classical dissipative system losing energy at a constant rate 𝛾𝛾 as 
time increases. This equation cannot be derived from any Lagrangian, since 
there is no stationary solution. In order to find out a suitable Lagrangian, one 
can assume that the energy lost by the system goes into another system, 
namely reversed–image system, which absorbs it (Morse and Feshbach, 
1953). 

m�̈�𝑦 − 𝛾𝛾�̇�𝑦 + ky = 0                           (11)  
        

That is, if the energy of the oscillator described by equation (10) is lost 
at a rate 𝛾𝛾, it will be gained at the same rate (with negative friction, − 𝛾𝛾) by 
the reversed–image system equation (11). 

This implies a zero total energy balance and, more importantly, that 
stationary (external) solutions for the larger system can be found. 

 

 

Hamilton-Jacobi Treatment of Damped harmonic Oscillator 
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Homogeneous Dissipative Harmonic Oscillator 

   The equation of motion of the one dimensional damped harmonic 
oscillator is 

m�̈�𝑥+𝛾𝛾�̇�𝑥 + kx = 0                                               (12)   

where the parametersm, 𝛾𝛾, k are time independent. However, since the system 
in equation (12) is dissipative, a straight forward Lagrangian description 
leading to a consistent canonical quantization is not available (Banerjee and 
Mukhejee, 2002). 

 

    In order to develop a canonical formalism, one requires equation (16) 
alongside its reversed image counterpart (Banerjee and Mukhejee, 2002; Ikot 
et al., 2010): 

m�̈�𝑦 − 𝛾𝛾�̇�𝑦 + ky = 0                                           (13) 
     

And write the variation of the action S as 

δS=∫ 𝑑𝑑𝑡𝑡 [( 𝑑𝑑
𝑑𝑑𝑡𝑡

(𝑚𝑚�̇�𝑥𝑡𝑡2
𝑡𝑡1

+ 𝛾𝛾ɤ𝑥𝑥) + 𝑘𝑘𝑥𝑥)𝛿𝛿𝑦𝑦 + ( 𝑑𝑑
𝑑𝑑𝑡𝑡

(m𝑦𝑦 ̇ − ɤ𝛾𝛾 𝑦𝑦) + 𝑘𝑘𝑦𝑦)𝛿𝛿𝑥𝑥  

                                                                                        (14)                            

   From equation(14), equation (12) is obtained by varying S with respect to 
y whereas equation (13) follows from varying S with respect to x. Then the 
equations of motion for x and y follow as Euler – Lagrange equations for y 
and x respectively. 

Now, starting from equation (14) we can deduce 

δS = −δ∫ 𝑑𝑑𝑡𝑡 [ 𝑚𝑚�̇�𝑥ẏ +   𝛾𝛾
2

(𝑥𝑥ẏ − �̇�𝑥𝑦𝑦) − 𝑘𝑘𝑥𝑥𝑦𝑦 𝑡𝑡2
𝑡𝑡1

]              (15)                             

It is then possible to identify 

L = 𝑚𝑚�̇�𝑥ẏ +  𝛾𝛾
2

(𝑥𝑥ẏ − �̇�𝑥𝑦𝑦) − 𝑘𝑘𝑥𝑥𝑦𝑦               (16)                              
  

 

The Lagrangian (16) can be written in a suggestive form by the substitution 
of the hyperbolic coordinates ξ and 𝜂𝜂 defined by 
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𝑥𝑥 = 1
√2

( ξ + 𝜂𝜂) ̀             (17)  

𝑦𝑦 = 1
√2

( 𝜉𝜉 −  𝜂𝜂)                      (18) 
   

So that 

L= 𝑚𝑚
2

( �̇�𝜉2 − �̇�𝜂2) +  𝛾𝛾
2
( 𝜂𝜂�̇�𝜉 − 𝜉𝜉�̇�𝜂)  − 𝑘𝑘

2
 ( 𝜉𝜉2 − 𝜂𝜂2)        (19) 

Then the Hamiltonian reads 

 H = 1
2𝑚𝑚

𝑝𝑝𝜉𝜉
2 + 𝑘𝑘

2
𝜉𝜉2 − 1

2𝑚𝑚
𝑝𝑝𝜂𝜂2 −

𝑘𝑘
2
𝜂𝜂2         (20)  

If we use the equations of transformation 

𝑝𝑝𝜉𝜉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉

                   (21)  
  

𝑝𝑝𝜂𝜂 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

        (22)   

We obtain the differential form of the Hamiltonian 

H = 1
2𝑚𝑚

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉

)2 + 𝑘𝑘
2
𝜉𝜉2 − 1

2𝑚𝑚
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂
�
2
− 𝑘𝑘

2
𝜂𝜂2    (23) 

The standard Hamilton-Jacobi equation for this Hamiltonian is given by 

     H + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

  = 0        (24) 

By substituting of equation (23) into equation (24), we obtain 

1
2𝑚𝑚

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉

)2 + 𝑘𝑘
2
𝜉𝜉2 − 1

2𝑚𝑚
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂
�
2
− 𝑘𝑘

2
𝜂𝜂2 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
 = 0   (25) 

Now we can expand the variables in the usual way of separation used in the 
Hamilton-Jacobi equation by assuming that S is the sum of three terms: 



Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 35. No.2, 2020. 
 

 89 

S (𝜉𝜉, 𝜂𝜂, 𝑡𝑡) = 𝑊𝑊𝜉𝜉 + 𝑊𝑊𝜂𝜂 − 𝛼𝛼3t    (26) 

Substituting equation (26) into equation (25), we obtain the following 
differential equation for 𝑊𝑊𝜉𝜉 and 𝑊𝑊𝜂𝜂: 

� 1
2𝑚𝑚

(
𝜕𝜕𝑊𝑊𝜉𝜉

𝜕𝜕𝜉𝜉
)2 + 𝑘𝑘

2
𝜉𝜉2� − � 1

2𝑚𝑚
�𝜕𝜕𝑊𝑊𝜂𝜂

𝜕𝜕𝜂𝜂
�
2

+ 𝑘𝑘
2
𝜂𝜂2� − 𝛼𝛼3= 0 (27) 

This equation can be correct if both of the terms in the left hand side is equal 
to a constant, since they are functions of different variables 

  1
2𝑚𝑚

(
𝜕𝜕𝑊𝑊𝜉𝜉

𝜕𝜕𝜉𝜉
)2 + 𝑘𝑘

2
𝜉𝜉2= 𝛼𝛼1                           (28)  

              

  1
2𝑚𝑚

�𝜕𝜕𝑊𝑊𝜂𝜂

𝜕𝜕𝜂𝜂
�
2

+ 𝑘𝑘
2
𝜂𝜂2=𝛼𝛼2    (29)              

where 𝛼𝛼1, 𝛼𝛼2 and 𝛼𝛼3 are constants such that 

 𝛼𝛼1 −  𝛼𝛼2 = 𝛼𝛼3                (30)  
  

By integrating the equations (28) and (29), we obtain 

𝑊𝑊𝜉𝜉=  �2𝑚𝑚𝛼𝛼1 

2
𝜉𝜉�1 −  𝑚𝑚𝑚𝑚

2

2𝛼𝛼1 
𝜉𝜉2 + 𝛼𝛼1 

|𝑚𝑚| 𝑠𝑠𝑖𝑖𝑠𝑠
−1�𝑚𝑚𝑚𝑚2

2𝛼𝛼1 
𝜉𝜉 (31) 

and 

𝑊𝑊𝜂𝜂= �2𝑚𝑚𝛼𝛼2 

2
𝜂𝜂�1 −  𝑚𝑚𝑚𝑚2

2𝛼𝛼2 
𝜂𝜂2 + 𝛼𝛼2 

|𝑚𝑚| 𝑠𝑠𝑖𝑖𝑠𝑠
−1�𝑚𝑚𝑚𝑚2

2𝛼𝛼2 
𝜂𝜂 (32) 

 

 

Therefore, 
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 S (𝜉𝜉, 𝜂𝜂, 𝑡𝑡) = �2𝑚𝑚𝛼𝛼1 

2
𝜉𝜉�1 −  𝑚𝑚𝑚𝑚

2

2𝛼𝛼1 
𝜉𝜉2 + 𝛼𝛼1 

|𝑚𝑚| 𝑠𝑠𝑖𝑖𝑠𝑠
−1�𝑚𝑚𝑚𝑚2

2𝛼𝛼1 
 𝜉𝜉 + 

�2𝑚𝑚𝛼𝛼2 

2
𝜂𝜂�1 −  𝑚𝑚𝑚𝑚2

2𝛼𝛼2 
𝜂𝜂2 + 𝛼𝛼2 

|𝑚𝑚| 𝑠𝑠𝑖𝑖𝑠𝑠
−1�𝑚𝑚𝑚𝑚2

2𝛼𝛼2 
 𝜂𝜂 −( 𝛼𝛼1 − 𝛼𝛼2)t (33)                       

Using the canonical transformations, we may determine the coordinates 𝜉𝜉 and 
𝜂𝜂 by differentiating the function S(𝜉𝜉, 𝜂𝜂, 𝑡𝑡) with respect to 𝛼𝛼1 and α2 and then 
put the results of these differentiations to new constants 𝛽𝛽1  and 𝛽𝛽2 
respectively. In this way we obtain 

𝛽𝛽1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼1

 = 1
|𝑚𝑚| 𝑠𝑠𝑖𝑖𝑠𝑠

−1�𝑚𝑚𝑚𝑚2

2𝛼𝛼1 
𝜉𝜉– t              (34)              

𝛽𝛽2 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼2

 = 1
|𝑚𝑚| 𝑠𝑠𝑖𝑖𝑠𝑠

−1�𝑚𝑚𝑚𝑚2

2𝛼𝛼2 
𝜂𝜂 +  t                               (35)

    

equations (34) and (35) can be solved to give  

                      𝜉𝜉 = �2𝛼𝛼1 
𝑚𝑚𝑚𝑚2 sin (𝜔𝜔𝛽𝛽1 + 𝜔𝜔𝑡𝑡)                                  (36)

                

                    𝜂𝜂 = �2𝛼𝛼2 
𝑚𝑚𝑚𝑚2 sin (𝜔𝜔𝛽𝛽2 − 𝜔𝜔𝑡𝑡)                        (37) 

To determine the momenta 𝑝𝑝𝜉𝜉  and 𝑝𝑝𝜂𝜂 , we may differentiate the function 
S( 𝜉𝜉, 𝜂𝜂, 𝑡𝑡) with respect to 𝜉𝜉and 𝜂𝜂. In this way we obtain 

       𝑝𝑝𝜉𝜉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉

= �2𝑚𝑚𝛼𝛼1 −  𝑚𝑚2𝜔𝜔2𝜉𝜉2                                (38)
   

       𝑝𝑝𝜂𝜂= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

 =�2𝑚𝑚𝛼𝛼2 −   𝑚𝑚2𝜔𝜔2𝜂𝜂2           (39) 

Substituting equations (36) and (37) into equations (38) and (39); 
respectively, we obtain  

𝑝𝑝𝜉𝜉= �2𝑚𝑚𝛼𝛼1  cos (𝜔𝜔𝛽𝛽1 + 𝜔𝜔𝑡𝑡)                   (40) 
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            𝑝𝑝 𝜂𝜂= �2𝑚𝑚𝛼𝛼2  cos (𝜔𝜔𝛽𝛽2 − 𝜔𝜔𝑡𝑡)                   (41)        

Substituting the equations (36) and (37) into equations (17) and (18), we get 
the final results of the equations of motion in terms of time: 

x = 1
√2

 (𝜉𝜉 + 𝜂𝜂)= 1
√2
��2𝛼𝛼1 

𝑚𝑚𝑚𝑚2 𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝛽𝛽1 + 𝜔𝜔𝑡𝑡) + �2𝛼𝛼2 
𝑚𝑚𝑚𝑚2 𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝛽𝛽2 − 𝜔𝜔𝑡𝑡)�    (42)  

y = 1
√2

 (𝜉𝜉 − 𝜂𝜂)= 1
√2
��2𝛼𝛼1 

𝑚𝑚𝑚𝑚2 𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝛽𝛽1 +  𝜔𝜔𝑡𝑡) −�2𝛼𝛼2 
𝑚𝑚𝑚𝑚2 𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝛽𝛽2 − 𝜔𝜔𝑡𝑡)�   (43)  

One can notice that the damping factor 𝛾𝛾 is no longer exist through all the 
results obtained. 

Non-Homogeneous Dissipative Harmonic Oscillator 

The equation of motion of the one dimensional damped harmonic oscillator 
is 

�̈�𝑥 − 2ɤ 𝛾𝛾 �̇�𝑥 + 𝜔𝜔2𝑥𝑥 = ℇ𝑦𝑦          (44) 

where the parameters  𝛾𝛾 , 𝜔𝜔 ,  ℇ  are time independent. However, since the 
system in equation (44) is dissipative, a straight forward Lagrangian 
description leading to a consistent canonical quantization is not available 
(Banerjee and Mukhejee, 2002). 

 

   In order to develop a canonical formalism, one requires equation (44) 
alongside its reversed image counterpart (Banerjee and Mukhejee, 2002; 
Banerjee andMukherjee, 2015): 

�̈�𝑦 + 2 𝛾𝛾ɤ�̇�𝑦 + 𝜔𝜔2𝑦𝑦 = ℇ𝑥𝑥                                       (45) 
               

The first oscillator is represented by x whereas the second oscillator is 
represented by y.  

The special case ℇ= 0 is the uncoupled motion of the two oscillators that 
corresponds to Bateman’s doublet consisting of a damped harmonic oscillator 
and its time reversed image (Bateman, 1931;  Caldirola, 1941; Kanai, 1948). 

The Lagrangian of the system can be constructed by the inverse Lagrangian 
method. First, we write the variation of the action as 
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δS= ∫ 𝑑𝑑𝑡𝑡 [( 𝑑𝑑
𝑑𝑑𝑡𝑡

(�̇�𝑥𝑡𝑡2
𝑡𝑡1

− 2ɤ 𝛾𝛾𝑥𝑥) + 𝜔𝜔2𝑥𝑥 − ℇ𝑦𝑦)𝛿𝛿𝑦𝑦 + ( 𝑑𝑑
𝑑𝑑𝑡𝑡

( 𝑦𝑦 ̇ + 2 𝛾𝛾ɤ𝑦𝑦) + 𝜔𝜔2𝑦𝑦 −
ℇ𝑥𝑥)𝛿𝛿𝑥𝑥             (46) 

From equation (46), equation(44) is obtained by varying S with respect to y 
whereas equation (45) follows from varying S with respect to x. Then the 
equations of motion for  x and y follow as Euler – Lagrange equations for y 
and x respectively. 

Now, starting from equation (46) we can deduce that 

δS = −δ∫ 𝑑𝑑𝑡𝑡 [ �̇�𝑥ẏ − 𝛾𝛾 ɤ(𝑥𝑥ẏ − �̇�𝑥𝑦𝑦) − 𝜔𝜔2𝑥𝑥𝑦𝑦 𝑡𝑡2
𝑡𝑡1

+ ℇ
2

(𝑥𝑥2 + 𝑦𝑦2)] (47) 

It is then possible to identify 

L = �̇�𝑥�̇�𝑦 – ɤ𝛾𝛾 (x�̇�𝑦 – �̇�𝑥y) – 𝜔𝜔2 x y + ℇ
2
 (𝑥𝑥2 +  𝑦𝑦2)  (48) 

The Lagrangian (48) can be written in a suggestive form by the substitution 
of the hyperbolic coordinates ξ and 𝜂𝜂 defined by 

𝑥𝑥 = 1
√2

( ξ + 𝜂𝜂)      (49) 

𝑦𝑦 = 1
√2

( ξ − 𝜂𝜂)     (50) 

The Lagrangianis then 

L= 1
2
( �̇�𝜉2 − �̇�𝜂2) −  ɤ( 𝜂𝜂�̇�𝜉 − 𝜉𝜉�̇�𝜂)  − 𝑚𝑚2

2
( 𝜉𝜉2 − 𝜂𝜂2) + ℇ

2
 (𝜉𝜉2 + 𝜂𝜂2)          (51) 

we find that the Hamiltonian H reeds 

H = 1
2
𝑝𝑝𝜉𝜉
2 − 1

2
𝑝𝑝𝜂𝜂2 + 1

2
 (𝜔𝜔2 −  ℇ) 𝜉𝜉2 −   1

2
 (𝜔𝜔2 +  ℇ)𝜂𝜂2            (52) 

If we use the equations of transformation 

      𝑝𝑝𝜉𝜉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉

                 (53) 

     𝑝𝑝𝜂𝜂 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

                 (54) 

We obtain the differential form of the Hamiltonian 
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H = 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉
�
2
+ 1
2
 (𝜔𝜔2 −  ℇ) 𝜉𝜉2 − 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂
�
2
− 1

2
 (𝜔𝜔2 +  ℇ)𝜂𝜂2  (55) 

The standard Hamilton-Jacobi equation for this Hamiltonian is given by 

    H +  𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

 = 0                    (56) 

By substituting of (55) in (56), we obtain 
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉
�
2
+ 1
2
 (𝜔𝜔2 −  ℇ) 𝜉𝜉2 − 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂
�
2
− 1

2
 (𝜔𝜔2 +  ℇ)𝜂𝜂2 +  𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
 = 0         (57) 

Now we can expand the variables in the usual way of separation used in the 
Hamilton-Jacobi equation by assuming that S is the sum of three terms: 

    S (𝜉𝜉 , 𝜂𝜂 , 𝑡𝑡) = 𝑊𝑊𝜉𝜉 + 𝑊𝑊𝜂𝜂 – 𝛼𝛼3𝑡𝑡                (58) 

By substituting of equation (58) into equation (57) we obtain the following 
differential equation for 𝑊𝑊𝜉𝜉 and 𝑊𝑊𝜂𝜂 

�
1
2
�
𝜕𝜕𝑊𝑊ℇ

𝜕𝜕𝜉𝜉
�
2

+
1
2

 (𝜔𝜔2 −  ℇ) 𝜉𝜉2� − �
1
2
�
𝜕𝜕𝑊𝑊𝜂𝜂

𝜕𝜕𝜂𝜂
�
2

+
1
2

 (𝜔𝜔2 +  ℇ)𝜂𝜂2� − 𝛼𝛼3

= 0         
                                                                                                        (59) 

This equation must be correct if both of the terms in the left hand side are 
equal to a constant, since they are functions of different variables 

         1
2
�𝜕𝜕𝑊𝑊ℇ
𝜕𝜕𝜉𝜉
�
2
 + 1

2
 (𝜔𝜔2 −  ℇ) 𝜉𝜉2  = 𝛼𝛼1    (60) 

            1
2
�𝜕𝜕𝑊𝑊𝜂𝜂

𝜕𝜕𝜂𝜂
�
2
+ 1
2
 (𝜔𝜔2 +  ℇ)𝜂𝜂2=  𝛼𝛼2    (61) 

Where 𝛼𝛼1 ,𝛼𝛼2 and 𝛼𝛼3 are the constants such that  

            𝛼𝛼1 −  𝛼𝛼2 =  𝛼𝛼3      (62) 

By integrating the equations (60) and (61), we obtain 

𝑊𝑊𝜉𝜉 = �2𝛼𝛼1
2

𝜉𝜉�1 − (𝑚𝑚
2− ℇ
2𝛼𝛼1

)   𝜉𝜉2 + 𝛼𝛼1
�(𝑚𝑚2− ℇ)

  𝑠𝑠𝑖𝑖𝑠𝑠−1�𝑚𝑚2− ℇ
2𝛼𝛼1

 𝜉𝜉  (63) 

 

And 
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𝑊𝑊𝜂𝜂 = �2𝛼𝛼2
2

𝜂𝜂�1 − (𝑚𝑚2+ℇ)
2𝛼𝛼2

𝜂𝜂2 + 𝛼𝛼2
√𝑚𝑚2+ℇ

  𝑠𝑠𝑖𝑖𝑠𝑠−1�𝑚𝑚2+ℇ
2𝛼𝛼2

𝜂𝜂   (64) 

Therefore,  

S (𝜉𝜉 , 𝜂𝜂 , 𝑡𝑡) = �2𝛼𝛼1
2

𝜉𝜉�1 − (𝑚𝑚2−ℇ)
2𝛼𝛼1

𝜉𝜉2 + 𝛼𝛼1
�(𝑚𝑚2− ℇ)

  𝑠𝑠𝑖𝑖𝑠𝑠−1�(𝑚𝑚2− ℇ)
2𝛼𝛼1

 𝜉𝜉  + 

 �2𝛼𝛼2
2

𝜂𝜂�1 − (𝑚𝑚2+ ℇ)
2𝛼𝛼2

𝜂𝜂2 + 𝛼𝛼2
�(𝑚𝑚2+ ℇ)

  𝑠𝑠𝑖𝑖𝑠𝑠−1�(𝑚𝑚2+ℇ)
2𝛼𝛼2

𝜂𝜂 − (𝛼𝛼1 − 𝛼𝛼2)𝑡𝑡 

                                                                                                                   (65) 

Using the canonical transformations, we may determine the coordinates 𝜉𝜉 
and 𝜂𝜂 by differentiating the function S(𝜉𝜉 , 𝜂𝜂 , 𝑡𝑡) with 𝛼𝛼1 and 𝛼𝛼2 and then put 
the results of these differentiations to new constants 𝛽𝛽1and 𝛽𝛽2, respectively. 
In this way we obtain 

𝛽𝛽1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼1

= 1
�(𝑚𝑚2−  ℇ)

  𝑠𝑠𝑖𝑖𝑠𝑠−1�𝑚𝑚2−  ℇ
2𝛼𝛼1

 𝜉𝜉 − t  

 (66) 

𝛽𝛽2 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼2

 = 1
�(ω2+ ℇ)

  𝑠𝑠𝑖𝑖𝑠𝑠−1�ω2+ ℇ
2𝛼𝛼2

𝜂𝜂+  t  

 (67) 

Equations (66) and (67) can be solved to give 

𝜉𝜉= � 2𝛼𝛼1
(𝑚𝑚2− ℇ) 𝑠𝑠𝑖𝑖𝑠𝑠�(𝜔𝜔2 − ℇ) (𝛽𝛽1+ t)   

 (68) 

𝜂𝜂 = � 2𝛼𝛼2
(𝑚𝑚2+ ℇ) 𝑠𝑠𝑖𝑖𝑠𝑠�(𝜔𝜔2 + ℇ) (𝛽𝛽2 − t)               

(69) 

To determine the momenta 𝑝𝑝𝜉𝜉  and 𝑝𝑝𝜂𝜂 we may differentiate the function 
S( 𝜉𝜉, 𝜂𝜂, 𝑡𝑡) with respect to 𝜉𝜉 and 𝜂𝜂. In this way we obtain 

𝑝𝑝𝜉𝜉 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉

=�2𝛼𝛼1 −  (𝜔𝜔2 − ℇ) 𝜉𝜉2   (70) 

𝑝𝑝𝜂𝜂 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

 =�2𝛼𝛼2 −  (𝜔𝜔2 +  ℇ)𝜂𝜂2   (71) 
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Substituting equations (68) and (69) into equations (70) and (71); 
respectively, we obtain  

𝑝𝑝𝜉𝜉 = �2𝛼𝛼1 cos(�(𝜔𝜔2 −  ℇ)(𝛽𝛽1 +  𝑡𝑡))  (72) 

𝑝𝑝𝜂𝜂= �2𝛼𝛼2cos(�(𝜔𝜔2 +  ℇ)(𝛽𝛽2 −  𝑡𝑡))   (73) 

Substituting the equations (68) and (69) into equations (49) and (50), we get 
the final results of the equations of motion in terms of time: 

x= 1
√2
�� 2𝛼𝛼1 

𝑚𝑚2− ℇ
𝑠𝑠𝑖𝑖𝑠𝑠 (�(𝜔𝜔2 − ℇ)(𝛽𝛽1 + 𝑡𝑡)) + � 2𝛼𝛼2 

𝑚𝑚2+ ℇ
𝑠𝑠𝑖𝑖𝑠𝑠 (�(𝜔𝜔2 + ℇ)(𝛽𝛽2 −

𝑡𝑡))�                                                                                             (74) 

y= 1
√2
�� 2𝛼𝛼1 

𝑚𝑚2− ℇ
𝑠𝑠𝑖𝑖𝑠𝑠(�(𝜔𝜔2 − ℇ)(𝛽𝛽1 +  𝑡𝑡) −� 2𝛼𝛼2 

𝑚𝑚2+ℇ
sin (�(𝜔𝜔2 + ℇ)(𝛽𝛽2 −  𝑡𝑡))�

                                                                                              (75) 

One can notice that the damping factor 𝛾𝛾 is no longer exist through all the 
results obtained. 

Figures (1) and (2) show that the system described by the variable x releases 
its energy (dissipation) while the system described by the variable y absorbs 
the energy from the system described by the x variable (Majima and Suzuki, 
2011). 

 

 
Fig.1: The coordinate x as a function of time t 
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Fig.2: The coordinate y as a function of time t 

 

Conclusion 

This work has aimed to study Hamiltonian-Jacobi Method of Time-
Independent   Mechanical Systems Based on the Doubling of Degrees of 
Freedom. One can double the degrees of freedom in order to use the usual 
canonical transformation methods. Applying this idea to three examples of 
harmonic oscillator, one obtains a pair of damped oscillations a primary one 
and its time reversed image ( tt −→ ).   

Any formulation of the harmonic oscillator is based on the direct or 
indirect representation. The direct representation leads to lagrangians having 
an explicit time dependence; hence these are not very popular. The indirect 
representation avoids this problem by a doubling of the degrees of freedom. 
It is called indirect because, taking the composite Lagrangian and varying one 
degree of freedom yields the equation of motion for the other degree. The 
usual composite Lagrangian, by construction, is two dimensional. It 
incorporates both forward and backward time propagations.    
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