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Abstract

In this paper, we provide the canonical approach for studying the damped
harmonic oscillator based on the doubling of degrees of freedom approach.
Explicit expressions for Lagrangians of the elementary modes of the problem
and characterising both forward and backward time propagations are given.
A Hamiltonian analysis showing the equivalence with the Lagrangian
approach is also done. To this end, the techniques of separation of variables
were applied.

Keywords: Doubling of degrees of freedom; Dissipated harmonic oscillator;
Hamilton-Jacobi; Time-independent Lagrangians.
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Introduction

The Hamilton-Jacobi theory is the principal of classical mechanics. This
theory principally helpful in identifying conserved quantities for mechanical
systems, which may be likely even when the mechanical problem itself cannot
be solved totally.

The Hamilton-Jacobi Equation is an important example of how new
information about mechanics can come out of the action. It is an important
step to formulate the equation of motion for simple harmonic oscillator of
nth-dimensional (Goldstein, 2000).

The inverse problem of variational calculus is to construct the Lagrangian
from the equations of motion. Different Lagrangian representations are
obtained from the direct and indirect approaches (Santilli, 1984). In the direct
representation as many variables are introduced as there are in the equations
of motion. The equation of motion corresponding to a coordinate q is related
with the variational derivative of the action with respect to the same
coordinate. Whereas, in the indirect representation, the equation of motion is
supplemented by its time - reversed image. The equation of motion with
respect to the original variable then corresponds to the variational derivative
of the action with respect to the image coordinate and viceversa (Bateman,
1931; Feshbach and Tikochinsky, 1977).

However, Serhan et al. obtained the action function for a suitable
Hamiltonian that describes the damped harmonic oscillator, and then the
system is quantized using the WKB approximation and the canonical
quantization (Serhan et al., 2018). In addition, Wang and Ru Wang formulated
the least action principle for classical mechanical dissipative systems. They
considered a whole conservative system composed of a damped moving body
and its environment receiving the dissipated energy (Qiuping Wang & Ru
Wang, 2018).

Bateman showed that a procedure of doubling of degrees of freedom is
required in order to use the usual canonical quantization methods (Bateman,
1931). Applying this idea to damped harmonic oscillator one obtains a pair of
damped oscillations (Blasone & Jizba, 2004).This system includes a primary
one and its time reversed image.

The aim of this paper is to extend the Hamilton-Jacobi formulation for
doubling of degrees of freedom of the Time-Independent Mechanical
systems. Furthermore, we will apply the technique of separation of variables
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and canonical transformations to solve the Hamilton-Jacobi partial
differential equations for these systems. This leads to another approach for
solving mechanical problems for doubling of degrees of freedom systems on
equal footing as for regular systems.

The paper is organized as follows. In section 2, a review of the Hamilton-
Jacobi Equation is introduced. In section 3, Doubling of Degrees of Freedom
is discussed.Then in section 4 we present Hamilton-Jacobi Treatment of
Damped harmonic Oscillator. The paper closes with some concluding
remarks in section 5.

Review of the Hamilton-Jacobi Equation

We can reach the Hamilton Jacobi equation by using the action function
as follows (Goldstein, 1980):

Consider the action for N particles, with 3N configuration space
coordinates x; .

t .
S(xirt) = ftoL(xi)xl) t)dt (1)
The action S is defined as the integral of the Lagrangian L between two
times to and t.
Taking the first variation of the action integral (1) gives

5S =Y, ([j—j 5xi]t +1, ("’_L _ i"’_‘) 5x; dt) (2)

dx; dt 0%,

The expression inside the integral that multiplies the variation §x; must
vanish for each i (Euler- Lagrange equations)

55 = Yia— 6x,() =3ipi 8x;(t) 3)

Where we have used the assumption, that, although the particles could
have started from any point x; at the initial time, the variation of that initial
point is zero : 6x;(ty) = 0. We have also used the fact that :71,: is the

momentum p; conjugate to the coordinate x; .
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But considering the action to be a function of the final positions x;(t)
and final time t, we also have for the first variation

Comparing the two expressions (3) and (4) for the first variation of the
action we have

= (5)

pl - axi

Differentiating the action with respect to time, we obtain
s as

L=3+2ip % (6)

Substituting equation (5) into equation (6), we obtain

as :

5 T QipiX, —L) =0 (7)

The expression in brackets is recognized as the Hamiltonian H(x;, P;, t).

Using
H(qi,pit) =pid. —L(qi 4., 1)
we can write equation (7) as

§+H(xi,§—;,t) =0 ®)

Which is the Hamilton-Jacobi equation in terms of the action function S .

Using the canonical transformations, we may determine the coordinates
x; by differentiate the function S (x;, t) with respect to «; and then put the
results of these differentiations to new constants £;. In this way we obtain

_as

Bi=ae (©)

Doubling of Degrees of Freedom
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A doubling of degrees of freedom is a doubling from one field
configuration to another. In dissipative systems, the energy of the damped
subsystem of the whole system must be dissipated away and transferred to
another subsystem. This invariably means that the damped oscillator is
described by a two-dimensional system; one subsystem of which dissipates
the energy and the other of which gets amplified by the transferred energy.
The simplest model for dissipation is damped oscillators with one or two
degrees of freedom. This kind of model has been suggested long ago by
Bateman (Bateman, 1931; Hasse, 1975) and later by Morse and Feshbach
(Morse and Feshbach, 1953) and Feshbach and Tikochinsky (Feshbach and
Tikochinsky, 1977).

The paradigm of the dissipative dynamics is the damped harmonic
oscillator model. In a one-dimensional configuration space, its equation of
motion is

mi+yx + kx=0 (10)

Where y is the damping constant or friction. Physically, this equation
describes a classical dissipative system losing energy at a constant rate y as
time increases. This equation cannot be derived from any Lagrangian, since
there is no stationary solution. In order to find out a suitable Lagrangian, one
can assume that the energy lost by the system goes into another system,
namely reversed—image system, which absorbs it (Morse and Feshbach,
1953).

my —yy +ky =0 (11)
That is, if the energy of the oscillator described by equation (10) is lost

at a rate y, it will be gained at the same rate (with negative friction, —y) by
the reversed—image system equation (11).

This implies a zero total energy balance and, more importantly, that
stationary (external) solutions for the larger system can be found.

Hamilton-Jacobi Treatment of Damped harmonic Oscillator
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Homogeneous Dissipative Harmonic Oscillator

The equation of motion of the one dimensional damped harmonic
oscillator is

mi+yx + kx =0 (12)

where the parametersm, y, k are time independent. However, since the system
in equation (12) is dissipative, a straight forward Lagrangian description
leading to a consistent canonical quantization is not available (Banerjee and
Mukhejee, 2002).

In order to develop a canonical formalism, one requires equation (16)
alongside its reversed image counterpart (Banerjee and Mukhejee, 2002; Ikot
et al., 2010):

my —yy +ky=0 (23)

And write the variation of the action S as
t d ) d, .
SS=ft12 dt [(o; (mi+ ywx) + kx)8y + (MY — ¥y y) + ky)dx
(14)

From equation(14), equation (12) is obtained by varying S with respect to
y whereas equation (13) follows from varying S with respect to x. Then the
equations of motion for x and y follow as Euler — Lagrange equations for y
and x respectively.

Now, starting from equation (14) we can deduce
S =5 fff dt [mxy + L(xy—sy) - kay] (15)

It is then possible to identify
L =mxy + %(xy —xy) — kxy (16)

The Lagrangian (16) can be written in a suggestive form by the substitution
of the hyperbolic coordinates & and n defined by
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x =5 (e+n) (17)
y=%(-1) (18)

So that
L= (8 = ") + Sné &) =5 (&2 =) (19)

Then the Hamiltonian reads

_ 1 - k 1 k
H=—pf+2¢2——pi —=n? (20)

2m

If we use the equations of transformation

as

Pg = 3 (21)
as
Pn =3, (22)
We obtain the differential form of the Hamiltonian
_ L @S2 kep 1 (05\2 ko
H= 2m (35) *3 ¢ 2m (an) 21 (23)

The standard Hamilton-Jacobi equation for this Hamiltonian is given by

as _
H+— =0 (24)
By substituting of equation (23) into equation (24), we obtain

1 3S\z  kgo 1 (9S\? _k 5 9S_
2m(af) +2€ Zm(an) 21 +6t_o (25)

Now we can expand the variables in the usual way of separation used in the
Hamilton-Jacobi equation by assuming that S is the sum of three terms:

88



Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 35. No.2, 2020.

S (€1,0) = Wy + Wy, — st (26)

Substituting equation (26) into equation (25), we obtain the following
differential equation for W; and W;:

s 56 [ () 5] o

This equation can be correct if both of the terms in the left hand side is equal
to a constant, since they are functions of different variables

YN 2= o
GO (28)
1 (OWy\2 |k ,_
o () +37=a (29)

where a4, a, and a5 are constants such that

a,— 0y = a3 (30)

By integrating the equations (28) and (29), we obtain

J2ma 2
Wgz Tlf ’1— T;Twlfz +|a—1|Sl

-1 m(uz
ot S C1Y
and

= sm‘1 e 2 (32)

2“2

Therefore,
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St =% “15/ Telge 4 Msin Tt [T g4
“Zmaz / sm ’ r] —(a; —a)t  (33)

Using the canonical transformations, we may determine the coordinates ¢ and
n by differentiating the function S(&, n, t) with respect to a, and a, and then
put the results of these differentiations to new constants B; and f,
respectively. In this way we obtain

as 1 . _ 2
R P LI Pt o (34)
as 1, _ 2
R PR 1\/?02 n+t (35)

equations (34) and (35) can be solved to give

f:

n= /,fifz sin (wp, — wt) (37)

To determine the momenta p; and p,, we may differentiate the function
S(&,n,t) with respect to £and 7. In this way we obtain

ps = —\/Zma1 — m2w?&? (38)

2";12 sin (wfBy + wt) (36)

as
Dp= E—\/Zma2 — m2w?n? (39)

Substituting equations (36) and (37) into equations (38) and (39);
respectively, we obtain

p:=+/2ma; cos (wpf; + wt) (40)
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py= J2ma, cos (wf, — wt) (41)

Substituting the equations (36) and (37) into equations (17) and (18), we get
the final results of the equations of motion in terms of time:

X :% & +n)= %l /:;12 sin(wpy + wt) + ’:;22 sin(wp, — a)t)l (42)

= € == | o, + 00 - [Esin(ops - 00| @)

One can notice that the damping factor y is no longer exist through all the
results obtained.

Non-Homogeneous Dissipative Harmonic Oscillator

The equation of motion of the one dimensional damped harmonic oscillator
is

¥—2¥yx+wix=Ey (44)

where the parameters y, w, € are time independent. However, since the
system in equation (44) is dissipative, a straight forward Lagrangian
description leading to a consistent canonical quantization is not available
(Banerjee and Mukhejee, 2002).

In order to develop a canonical formalism, one requires equation (44)
alongside its reversed image counterpart (Banerjee and Mukhejee, 2002;
Banerjee andMukherjee, 2015):

y+ 2y¥y + w?y = & (45)

The first oscillator is represented by x whereas the second oscillator is
represented by y.

The special case €= 0 is the uncoupled motion of the two oscillators that
corresponds to Bateman’s doublet consisting of a damped harmonic oscillator
and its time reversed image (Bateman, 1931; Caldirola, 1941; Kanai, 1948).

The Lagrangian of the system can be constructed by the inverse Lagrangian
method. First, we write the variation of the action as
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t a. d , .
8S= ftlz dt [(; (k=2 yx) + 0?x = EY)Sy + (5; (¥ +2y¥y) + w?y —
Ex)dx (46)

From equation (46), equation(44) is obtained by varying S with respect to y
whereas equation (45) follows from varying S with respect to x. Then the
equations of motion for x and y follow as Euler — Lagrange equations for y
and x respectively.

Now, starting from equation (46) we can deduce that
8S = —Sfttlz dt [ xy —y ¥(xy — xy) — w?xy + g(x2 +y3] (47
It is then possible to identify
L =iy -y (xy - &y) - w? xy + - («? + y?) (48)

The Lagrangian (48) can be written in a suggestive form by the substitution
of the hyperbolic coordinates & and n defined by

x=2(&+n) (49)
y=5(&-1) (50)

The Lagrangianis then

L=3(82 1) — w(né = &) — (2 -+ +n>) (50

we find that the Hamiltonian H reeds

1 1 1 1
H=2pf —opf +2 (02— €& — (0 + O (52)
If we use the equations of transformation
as
Ps = 5¢ (53)
as
bn =75, (54)

We obtain the differential form of the Hamiltonian
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_1(38\%, 1, 5 5 1(38\% 1, 5 2
H=2(G) v3 - 98 -3(5) —3@ + o (53)
The standard Hamilton-Jacobi equation for this Hamiltonian is given by
as _
H+ =0 (56)

By substituting of (55) in (56), we obtain
d as\? )
(G e -oe-iE) Sl o G0 @

Now we can expand the variables in the usual way of separation used in the
Hamilton-Jacobi equation by assuming that S is the sum of three terms:

S(E.,n,t)=Wg+ W, —ast (58)

By substituting of equation (58) into equation (57) we obtain the following
differential equation for W; and ¥},

0 - 0c]- BT s o]
=0
(59)

This equation must be correct if both of the terms in the left hand side are
equal to a constant, since they are functions of different variables

w2

%(a_;) * % (@* = &) & =a (60)
AW\ 2

%(_67117) + % (w? + M= a, (61)

Where a; , a, and a5 are the constants such that
al - az = a3 (62)

By integrating the equations (60) and (61), we obtain

Wf\/l _( ) 52 +m Si‘n_l a)22a—1€ f (63)

And
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1/20: _ (w%+8) 5 as . 1 |w?+E
W 20, n +\/w2+€ n 20, n (64)
Therefore,
S, 0= 1-C0e+ s sin! 20 6 o
J2a, (0%t a, . 1 [(w2+E) _
2 1 1 2a, N +J(w2+s) sin 2a, n—(a—az)t

(65)

Using the canonical transformations, we may determine the coordinates &
and n by differentiating the function S(¢ ,n , t) with a; and a, and then put
the results of these differentiations to new constants 5;and £,, respectively.
In this way we obtain

[1= aa1 \/7 sin~ f—t
(66)

_ﬁ_ 1 P w2+ €
B2 = da, _1/(w2+ €) st \/ 2a, ntt
(67)

Equations (66) and (67) can be solved to give

§= |2 sin/(@? =€) (Bt )

(68)

2a .
n= (wzfs)smd w?+€) (B, —1)

(69)

To determine the momenta p; and p, we may differentiate the function
S(&,n,t) with respect to ¢ and 7. In this way we obtain

pe=5=2a; — (@7 - ©) 2 (70)

as
Dy = Fm :\/Za2 — (w? + On? (71)
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Substituting equations (68) and (69) into equations (70) and (71);
respectively, we obtain

pe = /2a; cos(y/ (w? — €)(By + 1)) (72)

Py= \/2052005(\/(0)2 + &(B, — 1) (73)

Substituting the equations (68) and (69) into equations (49) and (50), we get
the final results of the equations of motion in terms of time:

\/_[ / Zzalssln W (@2 =8B, +1t) + / Zsin W (w?+E)(B, —
t))l (74)
— t))

y:%[ /;zajsgin(m(ﬁl +t)— ’52“42.5 :
(75)

One can notice that the damping factor y is no longer exist through all the
results obtained.

(w2 + )

Figures (1) and (2) show that the system described by the variable x releases
its energy (dissipation) while the system described by the variable y absorbs
the energy from the system described by the x variable (Majima and Suzuki,
2011).

X
1.0}

—:LO

Fig.1: The coordinate x as a function of time t
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Fig.2: The coordinate y as a function of time t

Conclusion

This work has aimed to study Hamiltonian-Jacobi Method of Time-
Independent  Mechanical Systems Based on the Doubling of Degrees of
Freedom. One can double the degrees of freedom in order to use the usual
canonical transformation methods. Applying this idea to three examples of
harmonic oscillator, one obtains a pair of damped oscillations a primary one
and its time reversed image (t —» -t).

Any formulation of the harmonic oscillator is based on the direct or
indirect representation. The direct representation leads to lagrangians having
an explicit time dependence; hence these are not very popular. The indirect
representation avoids this problem by a doubling of the degrees of freedom.
Itis called indirect because, taking the composite Lagrangian and varying one
degree of freedom yields the equation of motion for the other degree. The
usual composite Lagrangian, by construction, is two dimensional. It
incorporates both forward and backward time propagations.
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