
Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

93

Soft Cloud: A Tool for Visualizing Software Artifacts as Tag Clouds

Ra'Fat Al-Msie'deen*

rafatals3ode@gmail.com

Abstract
Software artifacts visualization helps software developers to manage

the size and complexity of the software system. The tag cloud technique

visualizes tags within the cloud according to their frequencies in software

artifacts. A font size of the tag within the cloud indicates its frequency

within a software artifact, while the color of a tag within the cloud uses just

for aesthetic purposes. This paper suggests a new approach (SoftCloud) to

visualize software artifacts as a tag cloud. The originality of SoftCloud is

visualizing all the artifacts available to the software program as a tag cloud.

Experiments have conducted on different software artifacts to validate

SoftCloud and demonstrate its strengths. The results showed the ability of

SoftCloud to correctly retrieve all tags and their frequencies from available

software artifacts.

Keywords: Software engineering, software visualization, software artifacts,

tag clouds.

* College of Information Technology - Department of Computer Information Systems, Mutah

University, Jordan.

 Received: 31/5/2020. Accepted: 14/4/2021.

© All rights reserved to Mutah University, Karak, Hashemite Kingdom of Jordan, 2022.

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

94

 اتالعلام ةعلى شكل سحاب وثائق البرنامج أداة لتصور

 *حمد المسيعدينأفت أر

 لخصم

مطوري البررامج عىرإ ارارح م رت وتد رد (software artifactsوثائق البرنامج)يساعد تصور
تصرررور الد مرررال را ررر (، tag cloud). ت نيرررال الرصرررور ال سررررندح الرررإ ررر ا الد مرررالبرنرررامج

را ررر (font size) . يشررر ر م رررت ررر الد مررر وثرررائق البرنرررامجالسررر ا و رررا ل درررد ت رار رررا ررر
اض را الس ا لأغر (color) يسرخدم لون الد م .البرنامج وثي الس ا الإ تررر الد م

 ر ا عىإ شك البرنامج وثائقلرصور (SoftCloudا)نهً ا جديد الب ث ا ررح ذيج الي .
عىررإ شررك ال رامرر لىبرنررامج وثررائق رر انهررا تصررور ج يرر ال SoftCloudت ررأ الررال الد مررال.

 وثرائقر رار عىرإ الاجرير ، وإثبرال ن راق توتهرا، SoftCloudلىر رق مرأ لر د مر .ال ر ا
 ررار ج ير الد مرال وتررراتهرا شركعىرإ ا رر SoftCloudاظهرل النرائج تدرح خرىف .البرنامج ال

 ال رام .البرنامج وثائقل يح مأ

 ل. ا الد ما وثائق البرنامج، : ند البرم يال، تصور البرم يال،الكلمات الدالة

 قسم نظم المعلومات الحاسوبية، جامعة مؤتة، الأردن. -كلية تكنولوجيا المعلومات *
 م.14/4/2021تاريخ تبو الب ث: م.31/5/2020تاريخ ت ديت الب ث:

 .2022 الهاش ي ،ال ى الأررني ال رك، ج ي م وق النشر م فوظ ل امد مؤت ، ©

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

95

1. Introduction

Tag cloud has become a widespread visualization and navigation

technique in the software engineering domain (Emerson, 2014; Lohmann et

al., 2009). Software artifacts visualization helps software developers to

manage the complexity and size of the software system (Al-Msie’deen,

2019c). This study suggests a new approach called SoftCloud to visualize

software artifacts as tag clouds. In general, the tag cloud is a visualization

technique for the content of a particular document (Al-Msie’deen, 2019a).

Tag cloud uses the font size to denote how often a particular tag has been

repeated through documents, while the tag color is for decoration purposes

only (Al-Msie’deen, 2019b).

Each tag in the cloud usually represents a single word, and tag

importance has shown appropriate font color and size (Rinaldi, 2019). Most

current studies use the static tag clouds to represent tags of the textual

documents and web pages (Hearst and Rosner, 2008; Cui et al., 2010;

García-Castro et al., 2009; Greene and Fischer, 2015). Current approaches

that build the tag cloud from the software code are either incomplete (i.e.,

use either classes or methods) or do not perform pre-processing of the tag

before adding it to the cloud (such as returning the English word to its root)

(Emerson, 2014; Emerson et al., 2013a; Emerson et al., 2013b; Deaker et

al., 2011; Cottrell et al., 2009; Anslow et al., 2008; Stocker, 2011; Martinez

et al., 2016; Bajracharya et al., 2010). The literature has shown very limited

work to mine tag cloud using different software artifacts (cf. Section 2).

Figure 1 displays an example of a tag cloud — SoftCloud's representation of

the abstract text of this paper.

Figure 1. Tag cloud summarizing the abstract of this paper.

In this work, the software artifacts are any documents related to the

software system. This paper considers any document resulting from the

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

96

software development process as an artifact. Thus, the following documents

are artifacts of the software: source code, commented code (i.e., Javadoc),

design documents such as software architecture document (Rational

software corp., 2001), and so on. Javadoc is a software artifact developed by

software experts to summarize the software code (Kramer, 1999). SoftCloud

considers all software identifier names (i.e., package, class, method, and

attribute names) inside the code artifact.

In this paper, tag cloud displays the most common tags across software

artifacts. In the tag cloud, some tags appear in different font sizes. However,

some tags appear important more than other tags. The number of times a tag

repeats within a software artifact determines the font size of this tag in the

cloud (Yonezawa et al., 2020). However, this allows the software developer

to see the most common tags as well as the unique tags in the tag cloud.

SoftCloud accepts any software artifacts as input. However, based on

its parser, SoftCloud extracts all software artifact words. After that, it

divides words into their constituent words. Then, it obtains the word roots.

Then, it determines the weight of each tag based on its frequency across

software artifacts. After that, it arranges tags in standard form. Tags are

arranged according to their frequency, random or alphabetical. Finally,

SoftCloud produces the tag clouds as outputs (cf. Figure 2).

SoftCloud is detailed in the rest of this paper as follows. Section 2

discusses the related work. Section 3 describes the SoftCloud approach step-

by-step. Section 4 presents the experiments were conducted to validate

SoftCloud’s approach. Finally, section 5 concludes and provides future

work of SoftCloud.

2. Related Work and Comparison with SoftCloud

This section presents the related work related to SoftCloud

contributions. It also gives a concise summary of the diverse approaches and

shows the need of suggesting SoftCloud’s approach.

In the software engineering field, industrial tools and academic research

have not focused on tag clouds as a popular visualization technique. Few

studies have proposed the idea of visualizing the software artifacts as a tag

cloud (Emerson, 2014; Emerson et al., 2013a; Emerson et al., 2013b;

Deaker et al., 2011; Cottrell et al., 2009; Anslow et al., 2008; Stocker, 2011;

Martinez et al., 2016; Bajracharya et al., 2010).

This section is limited to providing works very close to the

contributions of SoftCloud. In the related work, each approach receives one

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

97

type of software artifact as input. There is no generic approach to dealing

with different software artifacts. Some existing works deal only with one

artifact, such as software code or Javadoc (Al-Msie’deen, 2019b; Al-

Msie’deen, 2019c). The approach proposed in this study used different

software artifacts as inputs. Besides, SoftCloud listing some user tasks on

the tag cloud, such as: finding a particular tag, and finding the most

common tags, and so on.

Anslow et al. (Anslow et al., 2008) used a tag cloud to visualize

software classes. Cottrell et al. (Cottrell et al., 2009) proposed an approach

to visualize software methods as tag clouds. Sourcecloud (Stocker, 2011)

created a tag cloud for software classes. Al-Msie’deen (Al-Msie’deen,

2019c) used a tag cloud to visualize software source code, while, Al-

Msie’deen (Al-Msie’deen, 2019b) visualized JavaDocs file as a tag cloud.

Also, a tag cloud is used in the Sourcerer API Search (Bajracharya et al.,

2010) to visualize the code repository. Table 1 presents a comparison

between the selected tag cloud studies (i.e., small survey). The author

evaluates the studied approaches according to the following criteria: inputs,

outputs, cloud layout, and tag order.

Table 1. Selected main studies related to SoftCloud.

ID Inputs

cf
 P

ap
er

 #

P
ac

k
ag

es

C
la

ss
es

A
tt

ri
b
u
te

s

M
et

h
o
d
s

Ja
v

aD
o
cs

C
o

d
e

re
p
o
si

to
ri

es

S
p

ec
if

ic
 t

ex
t

C
o

d
e

b
lo

ck
s

1 x x x x

2 x

3 x

4 x x

5 x

6 x

7 x

8 x

9 x x x x

10 x

11 x

12 x x x x x

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

98

ID Outputs Layout Order

cf
 P

ap
er

 #

T
ag

 c
lo

u
d

B
lo

ck
 n

am
es

C
o

d
e

la
b

el
s

T
y

p
ew

ri
te

r

S
p

ir
al

A
lp

h
ab

et
ic

al

 R
an

d
o

m

F
re

q
u

en
cy

1 x x x

2 x x x

3 x x x

4 x x x x

5 x x x

6 x x x

7 x x x

8 x x x x x

9 x x x

10 x x x

11 x x x

12 x x x x x x

Paper # Author(s) Publication type

1 Al-Msie’deen, 2019c Journal

2 Al-Msie’deen, 2019b Journal

3 Anslow et al., 2008 Conf

4 Deaker et al., 2011 Technical report

5 Cottrell et al., 2009 Int. workshop

6 Stocker, 2011 Eclipse plug-in

7 Martinez et al., 2016 Conf

8 Emerson, 2014; 2013ab MSc thesis, Conf

9 Al-Msie’deen, 2018 Journal

10 Bajracharya et al., 2010 Conf

11 Feinberg, 2013 Tool

12 SoftCloud Journal

The brief overview of the current approaches shows the need to suggest

an approach to visualize different software artifacts as a tag cloud.

SoftCloud’s approach deals with different software artifacts such as source

code, design documents, and JavaDocs. On the other hand, SoftCloud’s

approach performs preprocessing of the tag before adding it to the cloud,

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

99

where it separates the words based on the camel-case splitting method, and

then returns each word to its origin. Also, SoftCloud introduces some useful

filters and user tasks (e.g., search tasks) within the cloud.

3. SoftCloud Step by Step

This section gives an overview of SoftCloud approach and describes the

approach step-by-step.

The study presented in this paper exploits the tag cloud visualization

technique and applies it to the software engineering domain. The originality

of this approach is that it receives as inputs different software artifacts.

Then, this approach generates the tag clouds to render the input information.

SoftCloud’s approach is designed to deal with the software engineering

datasets challenges (e.g., scale and complexity of software) using suitable

visual mappings existing in tag clouds to render the dataset data.

To visualize a software dataset as a tag cloud, it is important to define

visual characteristics that might influence perception within tag cloud such

as cloud layout (e.g., typewriter), tag order (e.g., random), tag length (e.g., a

variable number of letters or an equal number of letters), tag position, font

size (also font family, style, size, and color), and cloud background color. In

addition, it is important to choose visual characteristics that are suitable for

data mapping, such as font size.

Dataset needs the necessary pre-processing procedure to prepare it. In

the approach proposed in this paper, pre-processing is carried out by

extracting the words of the available software artifacts. Then, the words

have divided into their constituent words, and then each word is returned to

its original. In conclusion, word repetition has counted throughout software

artifacts, and at last, tags are arranged through the cloud using a specific

order. An overview of SoftCloud’s approach is shown in Figure 2.

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

100

Figure 2. SoftCloud approach overview.

A tag cloud is a type of weighted list to visualize software artifact data

(Jin, 2017), which gains growing attention and extra application

opportunities in the software engineering field. As a demonstrative example,

SoftCloud considers the source code of the Rhino software (Mozilla, 2012)

and JavaDoc of NanoXML software (Scheemaecker, 2020). Rhino is an

open-source application of JavaScript written completely in Java language.

It is embedded in Java implementation to deliver scripting to end-users.

J2SE 6 is used Rhino as the default Java scripting engine. NanoXML

application is Java software for parsing XML documents. SoftCloud

produces the artifact cloud in six phases are detailed below.

3.1. Mining Software Artifact Words

SoftCloud accepts the software artifact as input. Then, SoftCloud

generates a words file as output. The words file contains all the words for

the software artifact. Table 2 presents samples of words file contents of

Rhino and NanoXML artifacts.

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

101

Table 2. Samples of words file contents.

Software artifact

Rhino code NanoXML JavaDoc

org.mozilla.classfile XMLParseException

itsExceptionTableTop class

getClassName summary

addLoadConstant package

emptySubString nanoxml

SoftCloud considers the textual datasets (or words file), where the ideal

datasets contain textual identifiers such as method names. The kind of

dataset that would be ideal to show in a tag cloud is one that contains

considerable amounts of textual information. Several datasets have

contained this kind of information, in the form of identifiers, words, or

labels. Software engineering datasets contain this type of data like package

names and JavaDoc words.

3.2. Dividing Words to Their Constituent Words

SoftCloud divides the words extracted from the program's artifact into

their constituent words. SoftCloud uses the camel-case splitting method to

split artifact’s words based on capital letters (e.g., A-Z), special characters

(e.g., underscore), and numbers (e.g., 0-9). Each word is divided into words

based on the camel-case rules (Al-Msie’deen et al., 2014b).

Table 3. Samples showing examples of dividing words using camel-case.

NanoXML JavaDoc words

JavaDoc word Words

word1 word2 word3 word4

NanoXML nano x m l

ParseException parse exception

getLocalizedMessage get localized message

printStackTrace print stack trace

getLineNr get line nr

fillInStackTrace fill in stack trace

Rhino identifier names

Identifier name Words

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

102

word1 word2

org.mozilla org mozilla

itsFlags its flags

addField add field

putInt16 put int

unHex un hex

find_split find split

The Camel-case method is easy and widely used for dividing words

(Al-Msie’deen et al., 2014a). For instance:

getMaximumInterpreterStackDepth identifier name has split into get,

maximum, interpreter, stack, and depth. Table 3 presents samples of word

splitting from Rhino and NanoXML software.

3.3. Stemming Words to Their Roots

Stemming is the text normalization (or called word normalization)

technique, in the field of software engineering word normalization is used to

prepare words for more processing. Stemming is a way of stripping attaches

from words to form the word root (e.g., protected to protect). The word root

generated by SoftCloud does not have to be the real word itself. Stemmer is

used in SoftCloud to return the word to its word root. In SoftCloud,

stemming was performed through WordNet (Fellbaum, 1998). SoftCloud

relies on WordNet dictionary to swap English words with their roots or

stems (Princeton university, 2010).

Table 4. Examples of returning English words to their roots or origins.

Rhino code words NanoXML JavaDoc words

Identifier word Root or stem JavaDoc word Root or stem

synchronized synchronize indicates indicate

interfaces interface extends extend

reserved reserve thrown throw

parameters parameter parsing parse

arguments argument occurred occur

In SoftCloud, stemming is a method of changing an artifact word to its

root. The word root is the final form of the word that will appear in the

cloud as a tag. SoftCloud stemmer accepts as an input English word and

generates as output word root (or tag). For instance, the words parsing,

parses, and parsed all have the same root/stem which is parse. Sometimes,

the WordNet may not be dependable in all cases to return word root. In this

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

103

case, SoftCloud returns the word itself as being the root of the word. Table 4

shows examples of the word stems from Rhino and NanoXML software

artifacts.

3.4. Determining the Weight of Tag

In SoftCloud, tag weight gives a sign about tag frequency across

software artifact words. In this stage, a weight is assigned to each tag based

on its occurrences in software artifact words. Table 5 displays examples of

tags and their weights from Rhino and NanoXML software artifacts.

Table 5. Examples of tags and their weights from Rhino and NanoXML

artifacts.

Rhino code tags NanoXML JavaDoc tags

Tag Weight Tag Weight

Activation 20 Exception 10

Adapter 24 From 2

Add 134 Get 4

And 35 Java 7

Arg 12 Line 6

In fact, the number of times a tag is repeated is a very important

indication of the importance of this tag in the software artifact. For instance,

in drawing shapes software (Al-Msie’deen, 2019c), the shape tag arose

thirteen times across software source code, so the given weight of this tag is

thirteen. The font size for the tag in the mined cloud is the number of times

the tag is repeated throughout the software artifact document. Tags that

appear with a large font size are more important than others.

3.5. Arranging Tags in Standard Form

SoftCloud uses typewriter-style to arrange tags in the cloud from left to

right and from top to bottom. SoftCloud displays tags in the cloud in

alphabetical order (i.e., a-z). Software developer looks more able to find tags

in alphabetically ordered clouds (Al-Msie’deen, 2019c). Table 6 shows

examples of tags in alphabetical order.

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

104

Table 6. Examples of tags in alphabetical order.

Rhino code tags NanoXML JavaDoc tags

Unordered

tags

Tags in alphabetical

order

Unordered

tags

Tags in alphabetical

order

Mozilla Xmlend Nano Or

Classfile Xop X Package

Class Xor M Parse

File Year L Print

Writer Yield Class Public

Acc Z Parse Runtime

Public Zero Exception Stack

On the other hand, SoftCloud allows the developer to arrange the tags

according to their frequency. Tags have arranged within the cloud from the

highest to lowest frequency. If some tags are equal in frequency, then

SoftCloud sorts these tags alphabetically. Figure 3 shows the generated tag

cloud after applying the frequency order filter.

Figure 3. A tag cloud produced from JavaDoc of XMLParseException class

of NanoXML.

In this cloud, tags appear according to their importance. The most

important tags appear first in the cloud. The tag cloud in Figure 3 shows that

the most common tag in the JavaDoc of XMLParseException class is an

exception. The most common tags have been displayed in larger fonts.
3.6. Producing Software Artifact Cloud

In SoftCloud, the dataset is extracted first from the software artifact.

Then the dataset words are divided into their constituent words. After that,

each word is returned to its root. Later, the weights are determined for the

tags, and then the software engineer determines the appropriate arrangement

of the tags in the cloud. Finally, the cloud has been created. As an example,

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

105

SoftCloud uses the JavaDoc for XMLParseException class of NanoXML

software. Table 7 shows JavaDoc of XMLParseException class.
Table 7. JavaDoc of XMLParseException class of NanoXML

(Scheemaecker, 2020).

Class Summary

Package nanoxml.XMLParseException

public class XMLParseException

extends java.lang.RuntimeException

An XMLParseException is thrown when an error occurs while parsing an Xml

string.

Field Summary

static int No_Line, indicates that no line number has been associated with this

exception.

Constructor Summary

XMLParseException(java.lang.String name, int lineNr, java.lang.String

message), creates an exception.

XMLParseException(java.lang.String name, java.lang.String message), creates

an exception.

Method Summary

int getLineNr(), Where the error occurred, or No_Line if the line number

is unknown.

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,

printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Figure 4 shows a tag cloud extracted from JavaDoc of

XMLParseException class of NanoXML (cf. Table 7). This cloud contains

all tags of JavaDoc. The number next to each tag is an indication of how

often that tag is repeated within the software artifact. The mined tag cloud

shows the rarest tags such as when and unknown.

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

106

Figure 4. A tag cloud generated from JavaDoc of XMLParseException

class.

SoftCloud contains several features to allow data exploration such as

filtering data and handling large scale data. These features are the most

important to software engineering datasets. SoftCloud prototype is formed

to extract tag clouds from different software artifacts. SoftCloud prototype

is available at author page (Al-Msie’deen, 2021a).

4. Experimentation

This section presents the experiments conducted in this research to

display its soundness and presents different software artifacts. Also, it

shows the obtained results for some artifacts and presenting the threats to

the validity of SoftCloud. Figure 5 shows mined tag cloud from Rhino

software. SoftCloud algorithms need 22697 ms to generate tag cloud from

Rhino artifact. The most common tags (resp. the rarest tags) across Rhino

artifacts are presented in Table 8.

Table 8. Tags mined from Rhino artifact.

The most common tags The rarest tags

Tag Frequency Tag Frequency

Get 510 Zone 2

Id 444 Collect 1

Set 172 W 4

Name 168 After 3

Class 159 Yield 6

The number of tags across Rhino code is equal to 1095.

The execution time of SoftCloud in ms is equal to 22697.

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

107

The success of a SoftCloud is measured by three metrics: precision,

recall, and F-Measure (Al-Msie’deen, 2019b). Precision and recall give a

value of one, if the tag and its frequency in the cloud are the same as tag

frequency in the software artifact. F-Measure gives a value of one in cases

where both precision and recall are one (Al-Msie’deen, 2014). SoftCloud

evaluation metrics have values between zero and one.

For a specific tag within the cloud, a precision metric is a percentage of

correctly retrieved tag frequencies to the total number of retrieved tag

frequencies (cf. equation in Table 9), whereas recall metric is the percentage

of correctly retrieved tag frequencies to the total number of relevant tag

frequencies. The F-Measure metric combines recall and precision in one

value (Al-Msie’deen, 2014). An example of the calculation of these three

metrics are presented in Table 9.

Figure 5. A tag cloud generated from Rhino artifact.

An illustrative example is introduced in Table 9 to show: 1) how to

calculate these measures for a trace tag from JavaDoc of

XMLParseException class (cf. Table 7), and 2) the equation of each

measure. Moreover, 3) how to compute these measures based on some

samples (not related to SoftCloud experimentation).

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

108

Table 9. Standard SoftCloud evaluation metrics: precision, recall, and

F-Measure.

Tag relevant tag

frequency

correctly retrieved tag

frequencies

retrieved tag

frequencies

Trace 4 4 4

Metric Precision Recall F−Measure

Value 1 1 1

Precision = |{relevant tag frequencies} ∩ {retrieved tag frequencies}| /

|{retrieved tag frequencies}|

Recall = |{relevant tag frequencies} ∩ {retrieved tag frequencies}| /

|{relevant tag frequencies }|

F−Measure = 2 × [(Precision × Recall) / (Precision + Recall)]

Tag relevant tag

frequency

correctly retrieved tag

frequencies

retrieved tag

frequencies

Notify 100 50 150

Metric Precision Recall F−Measure

Value 0.3 0.5 0.4

Tag relevant tag

frequency

correctly retrieved tag

frequencies

retrieved tag

frequencies

Wait 70 70 100

Metric Precision Recall F−Measure

Value 0.7 1 0.8

Low precision (e.g., precision = 0.1) leads to low trust in the proposed

system (i.e., too much noise). On the other hand, low recall (e.g., recall =

0.1) leads to unawareness and inefficiency of the suggested approach (i.e.,

too many missing frequencies for the tag). Table 10 summarizes the

obtained results of some tags from Rhino and NanoXML software artifacts.

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

109

Table 10. Tags mined from Rhino and NanoXML software artifacts.

Software Tag Tag within

the cloud

Tag within

the artifact

SoftCloud evaluation

metrics

Precision Recall F-

Measure

Rhino A 37 37 1 1 1

And 35 35 1 1 1

Arg 12 12 1 1 1

NanoXML Get 4 4 1 1 1

X 7 7 1 1 1

An 5 5 1 1 1

Results display that precision value is one of all mined tags. Thus, all

frequencies of the retrieved tag are relevant. Recall metric value equals one

of all mined tags. Hence, all relevant tag frequencies are retrieved. F-

Measure value equals one of all mined tags. Consequently, all relevant tag

frequencies are recovered, and only the relevant tag frequencies are

recovered. The results demonstrate the efficiency and ability of SoftCloud to

accurately retrieve the correct frequency of tags from software artifacts.

Figure 6 shows the tag cloud generated from the source code summarization

of the draw method from drawing shapes software (Al-Msie’deen and Blasi,

2019).

Figure 6. Tag cloud generated from source code summarization.

I have implemented numerous tag cloud layouts. Tags are positioned

one at a time within the cloud, with the chosen order (e.g., alphabetical

order). SoftCloud layouts are typewriter and spiral layout. In typewriter

layout tags are positioned left to right, jumping to a new line once the next

tag cannot be positioned on the existing line. While, in a spiral layout the

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

110

first tag is positioned in the middle of the cloud, with consecutive tags are

being positioned around it in a spiral style. Figure 7 expressions the same

data set in Figure 6 with a spiral layout chosen. This layout is less

appropriate for some tasks, including discovering a particular tag or

emphasizing its absence.

Figure 7. Tag cloud with spiral layout.

Figure 8 shows the tag cloud generated from user and system

requirement of registration service. This requirement is included in the

requirements document of the interactive multimedia magazine application

(Al-Msie’deen, 2021b). A software engineer can extract the tag cloud from

several software artifacts such as use-case description (Al-Msie’deen,

2008), use-case diagram (Alfrijat and Al-Msie’deen, 2010), software

identifiers map (Al-Msie’deen and Blasi, 2021), and feature descriptions

(Salman et al., 2012).

Figure 8. Tag cloud generated from the software requirements specification

document.

The software architecture document is one of the software’s artifacts.

This document is a design document. Figure 9 represents the tag cloud

generated from a software architecture document of the collegiate sports

paging system (Rational software corp., 2001).

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

111

Figure 9. Tag cloud summarizing architecture document of collegiate

sports paging system.
The user of SoftCloud has the choice of filtering the tag text to a fixed

number of letters (e.g., 10 letters). This filter has two aims (cf. Figure 10), to

exploit available space in the cloud, and to minimize any side effect a larger

number of letters in a tag may have on user awareness (i.e., eye attention).

Figure 10. A tag cloud generated by using fixed number filter.

The threat to the validity of SoftCloud is that the existing prototype

considers only a Java code artifact. Moreover, when a software engineer

uses mixture words inside software artifacts (e.g., SeTStandardS) the camel-

case splitting method cannot deal with it (or should be enhanced with other

methods). The WordNet dictionary may not be dependable in all cases to

reveal the word root. Currently, SoftCloud is missing some filters, for

instance, it does not filter tag names that are textually similar.

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

112

5. Conclusion and Future Directions of SoftCloud

This paper proposed a new approach to visualize software artifacts as a

tag cloud. However, SoftCloud has executed on different software artifacts.

Such as rhino, nanoXML, drawing shapes, interactive multimedia

magazines, and collegiate sports paging software artifacts. The results were

showed that all tags and their occurrences are mined correctly from software

artifacts. However, the mined tag clouds have shown the most common and

rarest tags. Also, tags have been arranged randomly, alphabetically, or

according to their frequency. Also, tags within the cloud are filtered based

on their frequency or length. Besides, clouds have been organized according

to a typewriter or spiral layout. For future work, some user tasks will be

added to the cloud and use new cloud layouts. Finally, there is an urgent

need for a comprehensive survey providing all studies related to the tag

cloud techniques in the software engineering domain.

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

113

References

Al-Msie’deen, R. (2008). A requirement model of local news WEB/WAP

application for rural communities. Master thesis, Universiti Utara

Malaysia, Kedah Darul Aman, Malaysia.

Al-Msie’deen, R. (2014). Reverse Engineering Feature Models from Software

Variants to Build Software Product Lines. PhD thesis, Montpellier 2

University, France.

Al-Msie’deen, R. (2018). Automatic labeling of the object-oriented source

code: The Lotus approach. Science International-Lahore, 30(1):45–48.

Al-Msie’deen, R. (2019a). Object-oriented Software Documentation. LAP

LAMBERT Academic Publishing.

Al-Msie’deen, R. (2019b). Tag clouds for software documents visualization.

JOIV, 3(4):361–364.

Al-Msie’deen, R. (2019c). Tag clouds for the object-oriented source code

visualization. ETASR, 9(3):4243–4248.

Al-Msie’deen, R. (2021a). Softcloud prototype. Softcloud.

Al-Msie’deen, R. (2021b). Requirements specification of interactive

multimedia magazine for IT news in Jordan. Unpublished/ in Press.

Al-Msie’deen, R. & Blasi, A. (2021). Software evolution understanding:

automatic extraction of software identifiers map for object-oriented

software systems. Journal of Communications Software and Systems,

17(1): 20–28.

Al-Msie’deen, R. & Blasi, A. (2019). Supporting software documentation

with source code summarization. IJAAS, 6(1): 59-67.

Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., &Vauttier, S. (2014).

Automatic documentation of [mined] feature implementations from

source code elements and use-case diagrams with the REVPLINE

approach. SEKE, 24(10):1413–1438.

Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., & Vauttier, S. (2014b).

Documenting the mined feature implementations from the object-

oriented source code of a collection of software product variants. SEKE,

pages 138–143.

Alfrijat, A. M. & Al-Msie’deen, R. (2010). A requirement model of local

news WEB/WAP application for rural community. Advances in

Computer Science and Engineering, 4(1):37–53.

https://sites.google.com/site/ralmsideen/tools

SoftCloud: A Tool for Visualizing Software Artifacts as Tag Clouds Ra'Fat Al-Msie'deen

114

Anslow, C., Noble, J., Marshall, S.,&Tempero, E. (2008). Visualizing the

word structure of java class names. 23rd Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 777–778. ACM.

Bajracharya, S., Ossher, J., & Lopes, C. (2010). Searching API usage

examples in code repositories with sourcerer API search. In Proceedings

of 2010 ICSE Workshop on Search-driven Development: Users,

Infrastructure, Tools and Evaluation, pages 5–8. ACM.

Cottrell, R., Goyette, B., Holmes, R., Walker, R. J., & Denzinger, J. (2009).

Compare and contrast: Visual exploration of source code examples.

International Workshop on Visualizing Software for Understanding and

Analysis, pages 29–32. IEEE Computer Society.

Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., & Qu, H. (2010). Context-

preserving, dynamic word cloud visualization. IEEE Computer Graphics

and Applications, 30(6):42–53.

Deaker, C., Churcher, N., & Irwin, W. (2011). Tag clouds in software

visualisation. Technical report TR-COSC 01/11, pages 1–8. Department

of cs, University of Canterbury.

Emerson, J. (2014). Tag clouds in software visualisation. Master thesis,

University of Canterbury.

Emerson, J., Churcher, N., & Cockburn, A. (2013a). Tag clouds for software

and information visualisation. In Proceedings of the 14th Annual ACM

SIGCHI NZ conference on Computer-Human Interaction, pages 1:1–1:4.

ACM.

Emerson, J., Churcher, N., & Deaker, C. (2013b). From toy to tool: Extending

tag clouds for software and information visualisation. In 22nd Australian

Conference on Software Engineering (ASWEC 2013), pages 155–164.

IEEE Computer Society.

Feinberg, J. (2013). Wordle - Beautiful word clouds. Wordle.

Fellbaum, C. (1998). WordNet: an electronic lexical database. Cambridge,

MA: MIT Press. pages 449.

García-Castro, L., Hepp, M., & Castro, A. (2009). Tags4tags: using tagging to

consolidate tags. In Database and Expert Systems Applications, pages

619–628. Springer.

http://www.wordle.net/

Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied Sciences Series Vol. 37. No.2, 2022.

115

Greene, G. &Fischer, B. (2015). Interactive tag cloud visualization of

software version control repositories. VISSOFT 2015, pages 56–65.

IEEE Computer Society.

Hearst, M. & Rosner, D. (2008). Tag clouds: Data analysis tool or social

signaller?. In Hawaii International Conference on Systems Science, page

160. IEEE Computer Society.

Jin, Y. (2017). Development of Word Cloud Generator Software Based on

Python. 13th Global Congress on Manufacturing and Management, pages

788-792. Elsevier BV.

Kramer, D. (1999). API documentation from source code comments: a case

study of JavaDoc. Annual international conference on Documentation,

pages 147–153. ACM.

Lohmann, S., Ziegler J., &Tetzlaff, L. (2009). Comparison of Tag Cloud

Layouts: Task-Related Performance and Visual Exploration. In Human-

Computer Interaction - International Conference. pages 392--404.

Springer.

Martinez, J., Ziadi, T., Bissyande, T., Klein, J., & Traon, Y. (2016). Name

suggestions during feature identification: the variclouds approach. In

Proceedings of the 20th International Systems and SPLC, pages 119–123.

ACM.

Mozilla. (2012). Rhino - Mozilla | MDN. Rhino.

Princeton University. (2010). About WordNet. WordNet.

Rational Software Corp. (2001). Collegiate sports paging system - software

architecture document - version 1.0. Software architecture document.

Rinaldi, A. (2019). Web Summarization and Browsing Through Semantic

Tag Clouds. Int. J. Intell. Inf. Technol. 15(3): pages 1-23.

Salman, H., Seriai, A., Dony, C., & Al-Msie’deen, R. (2012). Recovering

traceability links between feature models and source code of product

variants. In VARY ’12, pages 21–25. ACM.

Scheemaecker, M. (2020). NanoXML 2.2.1. Nanoxml.

Stocker, M. (2011). Tag cloud visualization for source code. Sourcecloud.

Yonezawa, T., Wang, Y., Kawai, Y., & Sumiya, K. (2020). Dynamic Video

Tag Cloud: A Cooking Support System for Recipe Short Videos. In 25th

International Conference on Intelligent User Interfaces, pages 122-123.

ACM.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://wordnet.princeton.edu/
https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/examples/csports/ex_sad.htm#Architectural
http://nanoxml.sourceforge.net/orig/index.html
https://misto.ch/2011/09/19/tag-cloud-visualization-for-source-code/
https://misto.ch/2011/09/19/tag-cloud-visualization-for-source-code/

